Quantum thermodynamics

Quantum thermodynamics[1][2] is the study of the relations between two independent physical theories: thermodynamics and quantum mechanics. The two independent theories address the physical phenomena of light and matter. In 1905, Albert Einstein argued that the requirement of consistency between thermodynamics and electromagnetism[3] leads to the conclusion that light is quantized, obtaining the relation . This paper is the dawn of quantum theory. In a few decades quantum theory became established with an independent set of rules.[4] Currently quantum thermodynamics addresses the emergence of thermodynamic laws from quantum mechanics. It differs from quantum statistical mechanics in the emphasis on dynamical processes out of equilibrium. In addition, there is a quest for the theory to be relevant for a single individual quantum system.

  1. ^ Deffner, Sebastian; Campbell, Steve (2019). Quantum Thermodynamics: An introduction to the thermodynamics of quantum information. San Rafael, CA: Morgan & Claypool Publishers. doi:10.1088/2053-2571/ab21c6. ISBN 978-1-64327-658-8.
  2. ^ Adesso, Gerardo; Anders, Janet; Binder, Felix; Correa, Luis A.; Gogolin, Christian, eds. (2018). Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions. Fundamental Theories of Physics (1st ed.). Cham: Springer Publishing. ISBN 978-3-319-99046-0.
  3. ^ Einstein, A. (1905). "Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt". Annalen der Physik (in German). 322 (6): 132–148. Bibcode:1905AnP...322..132E. doi:10.1002/andp.19053220607. ISSN 0003-3804.
  4. ^ Neumann, John von; Von Neumann, John (1955). Mathematical Foundations of Quantum Mechanics. Princeton landmarks in mathematics and physics. Princeton Chichester: Princeton University Press. ISBN 978-0-691-02893-4.

Developed by StudentB