Random matrix

In probability theory and mathematical physics, a random matrix is a matrix-valued random variable—that is, a matrix in which some or all of its entries are sampled randomly from a probability distribution. Random matrix theory (RMT) is the study of properties of random matrices, often as they become large. RMT provides techniques like mean-field theory, diagrammatic methods, the cavity method, or the replica method to compute quantities like traces, spectral densities, or scalar products between eigenvectors. Many physical phenomena, such as the spectrum of nuclei of heavy atoms,[1][2] the thermal conductivity of a lattice, or the emergence of quantum chaos,[3] can be modeled mathematically as problems concerning large, random matrices.

  1. ^ Wigner, Eugene P. (1955). "Characteristic Vectors of Bordered Matrices With Infinite Dimensions". Annals of Mathematics. 62 (3): 548–564. doi:10.2307/1970079. ISSN 0003-486X. JSTOR 1970079.
  2. ^ Block, R. C.; Good, W. M.; Harvey, J. A.; Schmitt, H. W.; Trammell, G. T., eds. (1957-07-01). Conference on Neutron Physics by Time-Of-Flight Held at Gatlinburg, Tennessee, November 1 and 2, 1956 (Report ORNL-2309). Oak Ridge, Tennessee: Oak Ridge National Lab. doi:10.2172/4319287. OSTI 4319287.
  3. ^ Cite error: The named reference :2 was invoked but never defined (see the help page).

Developed by StudentB