A joint Politics and Economics series |
Social choice and electoral systems |
---|
Mathematics portal |
Ranked voting is any voting system that uses voters' rankings of candidates to choose a single winner or multiple winners. More formally, a ranked system is one that depends only on which of two candidates is preferred by a voter, and as such does not incorporate any information about intensity of preferences. Ranked voting systems vary dramatically in how preferences are tabulated and counted, which gives them very different properties.
In instant-runoff voting (IRV) and the single transferable vote system (STV), lower preferences are used as contingencies (back-up preferences) and are only applied when all higher-ranked preferences on a ballot have been eliminated.
Some ranked vote systems use ranks as weights; this type of system is called positional voting. In the Borda method, the 1st, 2nd, 3rd... candidates on each ballot receive 1, 2, 3... points, and the candidate with the smallest number of points is elected. Thus intensity of preference is assumed to be at ratios of 1 to 2, 2 to 3, etc. Although not typically described as such, the well-known plurality rule can be seen as a ranked voting system where a voter gives a single point to the candidate marked as their choice and zero points to all others, and the candidate with the largest number of points is elected. Taking the ranked ballots of instant-runoff voting and the single transferable vote system as indicating one choice at a time (that is, giving one point to the preference in use and zero points to all others), instant-runoff voting and the single transferable vote system can be seen as the most common non-degenerate ranked voting systems. They operate as staged variants of the plurality system that repeatedly eliminate last-place plurality winners if necessary to determine a majority or quota winner.[1]
Ranked voting systems, such as Borda count, are usually contrasted with rated voting methods, which allow voters to indicate how strongly they support different candidates (e.g. on a scale from 0 to 10).[2]
Ranked vote systems produce more information than X voting systems such as first-past-the-post voting. Rated voting systems produce more information than ordinal ballots; as a result, they are not subject to many of the problems with weighted rank voting (including results like Arrow's theorem).[3][4][5]
In the United States and Australia, the terms ranked-choice voting and preferential voting, respectively, almost always refer to instant-runoff voting. However, because these terms have also been used to mean ranked systems in general, many social choice theorists recommend the use of instant-runoff voting in contexts where it could cause confusion.
Condorcet winner. If a candidate is the winning candidate in every paired comparison, the candidate shall be declared the winner of the election.
Ordinal utility is a measure of preferences in terms of rank orders—that is, first, second, etc. ... Cardinal utility is a measure of preferences on a scale of cardinal numbers, such as the scale from zero to one or the scale from one to ten.
Dr. Arrow: Well, I’m a little inclined to think that score systems where you categorize in maybe three or four classes probably (in spite of what I said about manipulation) is probably the best.
Dr. Arrow: Well, I’m a little inclined to think that score systems where you categorize in maybe three or four classes (in spite of what I said about manipulation) is probably the best.[...] And some of these studies have been made. In France, [Michel] Balinski has done some studies of this kind which seem to give some support to these scoring methods.