Reference class forecasting

Reference class forecasting or comparison class forecasting is a method of predicting the future by looking at similar past situations and their outcomes. The theories behind reference class forecasting were developed by Daniel Kahneman and Amos Tversky. The theoretical work helped Kahneman win the Nobel Prize in Economics.

Reference class forecasting is so named as it predicts the outcome of a planned action based on actual outcomes in a reference class of similar actions to that being forecast.

Discussion of which reference class to use when forecasting a given situation is known as the reference class problem.


Developed by StudentB