Root mucilage

Root mucilage is made of plant-specific polysaccharides or long chains of sugar molecules.[1][2] This polysaccharide secretion of root exudate forms a gelatinous substance that sticks to the caps of roots.[3] Root mucilage is known to play a role in forming relationships with soil-dwelling life forms.[1][4] Just how this root mucilage is secreted is debated, but there is growing evidence that mucilage derives from ruptured cells. As roots penetrate through the soil, many of the cells surrounding the caps of roots are continually shed and replaced.[5] These ruptured or lysed cells release their component parts, which include the polysaccharides that form root mucilage. These polysaccharides come from the Golgi apparatus and plant cell wall, which are rich in plant-specific polysaccharides.[6] Unlike animal cells, plant cells have a cell wall that acts as a barrier surrounding the cell providing strength, which supports plants just like a skeleton.

This cell wall is used to produce everyday products such as timber, paper, and natural fabrics, including cotton.[7]

Root mucilage is a part of a wider secrete from plant roots known as root exudate. Plant roots secrete a variety of organic molecules into the surrounding soil, such as proteins, enzymes, DNA, sugars and amino acids, which are the building blocks of life.[3][4] This collective secretion is known as root exudate. This root exudate prevents root infection from bacteria and fungi, helps the roots to penetrate through the soil, and can create a micro-climate that is beneficial to the plant.

  1. ^ a b Walker, Travis S.; Bais, Harsh Pal; Grotewold, Erich; Vivanco, Jorge M. (2003-05-01). "Root Exudation and Rhizosphere Biology". Plant Physiology. 132 (1): 44–51. doi:10.1104/pp.102.019661. ISSN 1532-2548. PMC 1540314. PMID 12746510.
  2. ^ Baetz, Ulrike; Martinoia, Enrico (2014-02-01). "Root exudates: the hidden part of plant defense" (PDF). Trends in Plant Science. 19 (2): 90–98. doi:10.1016/j.tplants.2013.11.006. PMID 24332225.
  3. ^ a b Jackson, Mike (2003-06-01). "Ridge, I. (ed) Plants". Annals of Botany. 91 (7): 940–941. doi:10.1093/aob/mcg100. ISSN 0305-7364. PMC 4242402.
  4. ^ a b "The Rhizosphere - Roots, Soil and Everything In Between | Learn Science at Scitable". Nature.com. Retrieved 2015-09-01.
  5. ^ McCully, Margaret E. (1999-01-01). "ROOTS IN SOIL: Unearthing the Complexities of Roots and Their Rhizospheres". Annual Review of Plant Physiology and Plant Molecular Biology. 50 (1): 695–718. doi:10.1146/annurev.arplant.50.1.695. PMID 15012224.
  6. ^ Read, D. B.; Gregory, P. J. (1997-12-01). "Surface tension and viscosity of axenic maize and lupin root mucilages". New Phytologist. 137 (4): 623–628. doi:10.1046/j.1469-8137.1997.00859.x. ISSN 1469-8137.
  7. ^ Albersheim, Peter; Darvill, Alan; Roberts, Keith; Sederoff, Ron; Staehelin, Andrew (2010-04-23). Plant Cell Walls. Garland Science. ISBN 9781136843587.

Developed by StudentB