Selection is the stage of a genetic algorithm or more general evolutionary algorithm in which individual genomes are chosen from a population for later breeding (e.g., using the crossover operator). Selection mechanisms are also used to choose candidate solutions (individuals) for the next generation. Retaining the best individuals in a generation unchanged in the next generation, is called elitism or elitist selection. It is a successful (slight) variant of the general process of constructing a new population.
A selection procedure for breeding used early on[1] may be implemented as follows:
For many problems the above algorithm might be computationally demanding. A simpler and faster alternative uses the so-called stochastic acceptance.
If this procedure is repeated until there are enough selected individuals, this selection method is called fitness proportionate selection or roulette-wheel selection. If instead of a single pointer spun multiple times, there are multiple, equally spaced pointers on a wheel that is spun once, it is called stochastic universal sampling. Repeatedly selecting the best individual of a randomly chosen subset is tournament selection. Taking the best half, third or another proportion of the individuals is truncation selection.
There are other selection algorithms that do not consider all individuals for selection, but only those with a fitness value that is higher than a given (arbitrary) constant. Other algorithms select from a restricted pool where only a certain percentage of the individuals are allowed, based on fitness value.