Signal processing

Signal transmission using electronic signal processing. Transducers convert signals from other physical waveforms to electric current or voltage waveforms, which then are processed, transmitted as electromagnetic waves, received and converted by another transducer to final form.
The signal on the left looks like noise, but the signal processing technique known as spectral density estimation (right) shows that it contains five well-defined frequency components.

Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing signals, such as sound, images, potential fields, seismic signals, altimetry processing, and scientific measurements.[1] Signal processing techniques are used to optimize transmissions, digital storage efficiency, correcting distorted signals, improve subjective video quality, and to detect or pinpoint components of interest in a measured signal.[2]

  1. ^ Sengupta, Nandini; Sahidullah, Md; Saha, Goutam (August 2016). "Lung sound classification using cepstral-based statistical features". Computers in Biology and Medicine. 75 (1): 118–129. doi:10.1016/j.compbiomed.2016.05.013. PMID 27286184.
  2. ^ Alan V. Oppenheim and Ronald W. Schafer (1989). Discrete-Time Signal Processing. Prentice Hall. p. 1. ISBN 0-13-216771-9.

Developed by StudentB