Striatum | |
---|---|
Details | |
Part of | Basal ganglia[1] Reward system[2][3] |
Parts | Ventral striatum[2][3][4] Dorsal striatum[2][3][4] |
Identifiers | |
Latin | striatum |
MeSH | D003342 |
NeuroNames | 225 |
NeuroLex ID | birnlex_1672 |
TA98 | A14.1.09.516 A14.1.09.515 |
TA2 | 5559 |
FMA | 77616 77618, 77616 |
Anatomical terms of neuroanatomy |
The striatum (pl.: striata) or corpus striatum[5] is a cluster of interconnected nuclei that make up the largest structure of the subcortical basal ganglia.[6] The striatum is a critical component of the motor and reward systems; receives glutamatergic and dopaminergic inputs from different sources; and serves as the primary input to the rest of the basal ganglia.
Functionally, the striatum coordinates multiple aspects of cognition, including both motor and action planning, decision-making, motivation, reinforcement, and reward perception.[2][3][4] The striatum is made up of the caudate nucleus and the lentiform nucleus.[7][8] However, some authors believe it is made up of caudate nucleus, putamen, and ventral striatum.[9] The lentiform nucleus is made up of the larger putamen, and the smaller globus pallidus.[10] Strictly speaking the globus pallidus is part of the striatum. It is common practice, however, to implicitly exclude the globus pallidus when referring to striatal structures.
In primates, the striatum is divided into the ventral striatum and the dorsal striatum, subdivisions that are based upon function and connections. The ventral striatum consists of the nucleus accumbens and the olfactory tubercle. The dorsal striatum consists of the caudate nucleus and the putamen. A white matter nerve tract (the internal capsule) in the dorsal striatum separates the caudate nucleus and the putamen.[4] Anatomically, the term striatum describes its striped (striated) appearance of grey-and-white matter.[11]
YAGER2015
was invoked but never defined (see the help page).The DS (also referred to as the caudate-putamen in primates) is associated with transitions from goal-directed to habitual drug use, due in part to its role in stimulus–response learning.28,46 As described above, the initial rewarding and reinforcing effects of drugs of abuse are mediated by increases in extracellular DA in the NAc shell, and after continued drug use in the NAc core.47,48 After prolonged drug use, drug-associated cues produce increases in extracellular DA levels in the DS and not in the NAc.49 This lends to the notion that a shift in the relative engagement from the ventral to the dorsal striatum underlies the progression from initial, voluntary drug use to habitual and compulsive drug use.28 In addition to DA, recent evidence indicates that glutamatergic transmission in the DS is important for drug-induced adaptations and plasticity within the DS.50
FERRE2010
was invoked but never defined (see the help page).