In geology, strike and dip is a measurement convention used to describe the plane orientation or attitude of a planar geologic feature. A feature's strike is the azimuth of an imagined horizontal line across the plane, and its dip is the angle of inclination (or depression angle) measured downward from horizontal.[1] They are used together to measure and document a structure's characteristics for study or for use on a geologic map.[2] A feature's orientation can also be represented by dip and dip direction, using the azimuth of the dip rather than the strike value. Linear features are similarly measured with trend and plunge, where "trend" is analogous to dip direction and "plunge" is the dip angle.[3]
Strike and dip are measured using a compass and a clinometer. A compass is used to measure the feature's strike by holding the compass horizontally against the feature. A clinometer measures the feature's dip by recording the inclination perpendicular to the strike.[1] These can be done separately, or together using a tool such as a Brunton transit or a Silva compass.
Any planar feature can be described by strike and dip, including sedimentary bedding, fractures, faults, joints, cuestas, igneous dikes and sills, metamorphic foliation and fabric, etc. Observations about a structure's orientation can lead to inferences about certain parts of an area's history, such as movement, deformation, or tectonic activity.[3]