Super-resolution microscopy

Super-resolution microscopy is a series of techniques in optical microscopy that allow such images to have resolutions higher than those imposed by the diffraction limit,[1][2] which is due to the diffraction of light.[3] Super-resolution imaging techniques rely on the near-field (photon-tunneling microscopy[4] as well as those that use the Pendry Superlens and near field scanning optical microscopy) or on the far-field. Among techniques that rely on the latter are those that improve the resolution only modestly (up to about a factor of two) beyond the diffraction-limit, such as confocal microscopy with closed pinhole or aided by computational methods such as deconvolution[5] or detector-based pixel reassignment (e.g. re-scan microscopy,[6] pixel reassignment[7]), the 4Pi microscope, and structured-illumination microscopy technologies such as SIM[8][9] and SMI.

There are two major groups of methods for super-resolution microscopy in the far-field that can improve the resolution by a much larger factor:[10]

  1. Deterministic super-resolution: the most commonly used emitters in biological microscopy, fluorophores, show a nonlinear response to excitation, which can be exploited to enhance resolution. Such methods include STED, GSD, RESOLFT and SSIM.
  2. Stochastic super-resolution: the chemical complexity of many molecular light sources gives them a complex temporal behavior, which can be used to make several nearby fluorophores emit light at separate times and thereby become resolvable in time. These methods include super-resolution optical fluctuation imaging (SOFI) and all single-molecule localization methods (SMLM), such as SPDM, SPDMphymod, PALM, FPALM, STORM, and dSTORM.

On 8 October 2014, the Nobel Prize in Chemistry was awarded to Eric Betzig, W.E. Moerner and Stefan Hell for "the development of super-resolved fluorescence microscopy", which brings "optical microscopy into the nanodimension".[11][12] The different modalities of super-resolution microscopy are increasingly being adopted by the biomedical research community, and these techniques are becoming indispensable tools to understanding biological function at the molecular level.[13]

  1. ^ Neice A (2010). Methods and Limitations of Subwavelength Imaging. Advances in Imaging and Electron Physics. Vol. 163. pp. 117–140. doi:10.1016/S1076-5670(10)63003-0. ISBN 978-0-12-381314-5.
  2. ^ Stockert JC, Blázquez-Castro A (2017). "Chapter 20 Super-resolution Microscopy". Fluorescence Microscopy in Life Sciences. Bentham Science Publishers. pp. 687–711. ISBN 978-1-68108-519-7. Archived from the original on 14 May 2019. Retrieved 24 December 2017.
  3. ^ Abbe E (1873). "Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrmehmung" (PDF). Archiv für mikroskopische Anatomie (in German). 9: 413–420. doi:10.1007/BF02956173. S2CID 135526560.
  4. ^ Guerra JM (September 1990). "Photon tunneling microscopy". Applied Optics. 29 (26): 3741–52. Bibcode:1990ApOpt..29.3741G. doi:10.1364/AO.29.003741. PMID 20567479. S2CID 23505916.
  5. ^ Agard DA, Sedat JW (April 1983). "Three-dimensional architecture of a polytene nucleus". Nature. 302 (5910): 676–81. Bibcode:1983Natur.302..676A. doi:10.1038/302676a0. PMID 6403872. S2CID 4311047.
  6. ^ De Luca GM, Breedijk RM, Brandt RA, Zeelenberg CH, de Jong BE, Timmermans W, et al. (1 November 2013). "Re-scan confocal microscopy: scanning twice for better resolution". Biomedical Optics Express. 4 (11): 2644–56. doi:10.1364/BOE.4.002644. PMC 3829557. PMID 24298422.
  7. ^ Sheppard CJ, Mehta SB, Heintzmann R (August 2013). "Superresolution by image scanning microscopy using pixel reassignment". Optics Letters. 38 (15): 2889–92. Bibcode:2013OptL...38.2889S. doi:10.1364/OL.38.002889. hdl:1912/6208. PMID 23903171.
  8. ^ Guerra, John M. (26 June 1995). "Super-resolution through illumination by diffraction-born evanescent waves". Applied Physics Letters. 66 (26): 3555–3557. Bibcode:1995ApPhL..66.3555G. doi:10.1063/1.113814. ISSN 0003-6951.
  9. ^ U.S. Pat. No. 5,666,197: Apparatus and methods employing phase control and analysis of evanescent illumination for imaging and metrology of subwavelength lateral surface topography; John M. Guerra, September 1997. Assigned to Polaroid Corp.
  10. ^ SPIE (March 2015). "W.E. Moerner plenary presentation: Single-molecule spectroscopy, imaging, and photocontrol -- foundations for super-resolution microscopy". SPIE Newsroom. doi:10.1117/2.3201503.17.
  11. ^ Ritter K, Rising M (8 October 2014). "2 Americans, 1 German win chemistry Nobel". Associated Press. Retrieved 8 October 2014.
  12. ^ Chang K (8 October 2014). "2 Americans and a German Are Awarded Nobel Prize in Chemistry". The New York Times. Retrieved 8 October 2014.
  13. ^ Vangindertael, J.; Camacho, R.; Sempels, W.; Mizuno, H.; Dedecker, P.; Janssen, K. P. F. (2018). "An introduction to optical super-resolution microscopy for the adventurous biologist". Methods and Applications in Fluorescence. 6 (2): 022003. Bibcode:2018MApFl...6b2003V. doi:10.1088/2050-6120/aaae0c. ISSN 2050-6120. PMID 29422456.

Developed by StudentB