Superdense coding

Schematic video demonstrating individual steps of superdense coding. A message consisting of two bits (in video these are (1, 0)) is sent from station A to station B using only a single particle. This particle is a member of an entangled pair created by source S. Station A at first applies a properly chosen operation to its particle and then sends it to station B, which measures both particles in the Bell basis. The measurement result retrieves the two bits sent by station A.

In quantum information theory, superdense coding (also referred to as dense coding) is a quantum communication protocol to communicate a number of classical bits of information by only transmitting a smaller number of qubits, under the assumption of sender and receiver pre-sharing an entangled resource. In its simplest form, the protocol involves two parties, often referred to as Alice and Bob in this context, which share a pair of maximally entangled qubits, and allows Alice to transmit two bits (i.e., one of 00, 01, 10 or 11) to Bob by sending only one qubit.[1][2] This protocol was first proposed by Charles H. Bennett and Stephen Wiesner in 1970[3] (though not published by them until 1992) and experimentally actualized in 1996 by Klaus Mattle, Harald Weinfurter, Paul G. Kwiat and Anton Zeilinger using entangled photon pairs.[2] Superdense coding can be thought of as the opposite of quantum teleportation, in which one transfers one qubit from Alice to Bob by communicating two classical bits, as long as Alice and Bob have a pre-shared Bell pair.[2]

The transmission of two bits via a single qubit is made possible by the fact that Alice can choose among four quantum gate operations to perform on her share of the entangled state. Alice determines which operation to perform accordingly to the pair of bits she wants to transmit. She then sends Bob the qubit state evolved through the chosen gate. Said qubit thus encodes information about the two bits Alice used to select the operation, and this information can be retrieved by Bob thanks to pre-shared entanglement between them. After receiving Alice's qubit, operating on the pair and measuring both, Bob obtains two classical bits of information. It is worth stressing that if Alice and Bob do not pre-share entanglement, then the superdense protocol is impossible, as this would violate Holevo's theorem.

Superdense coding is the underlying principle of secure quantum secret coding. The necessity of having both qubits to decode the information being sent eliminates the risk of eavesdroppers intercepting messages.[4]

  1. ^ Bennett, C.; Wiesner, S. (1992). "Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states". Physical Review Letters. 69 (20): 2881–2884. Bibcode:1992PhRvL..69.2881B. doi:10.1103/PhysRevLett.69.2881. PMID 10046665.
  2. ^ a b c Nielsen, Michael A.; Chuang, Isaac L. (9 December 2010). "2.3 Application: superdense coding". Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press. p. 97. ISBN 978-1-139-49548-6.
  3. ^ Stephen Wiesner. Memorial blog post by Or Sattath, with scan of Bennett's handwritten notes from 1970. See also Stephen Wiesner (1942–2021) by Scott Aaronson, which also discusses this topic.
  4. ^ Wang, C., Deng, F.-G., Li, Y.-S., Liu, X.-S., & Long, G. L. (2005). Quantum secure direct communication with high-dimension quantum superdense coding. Physical Review A, 71(4).

Developed by StudentB