Technicolor (physics)

Technicolor theories are models of physics beyond the Standard Model that address electroweak gauge symmetry breaking, the mechanism through which W and Z bosons acquire masses. Early technicolor theories were modelled on quantum chromodynamics (QCD), the "color" theory of the strong nuclear force, which inspired their name.

Instead of introducing elementary Higgs bosons to explain observed phenomena, technicolor models were introduced to dynamically generate masses for the W and Z bosons through new gauge interactions. Although asymptotically free at very high energies, these interactions must become strong and confining (and hence unobservable) at lower energies that have been experimentally probed. This dynamical approach is natural and avoids issues of quantum triviality and the hierarchy problem of the Standard Model.

However, since the Higgs boson discovery at the CERN LHC in 2012, the original models are largely ruled out. Nonetheless, it remains a possibility that the Higgs boson is a composite state.[1]

In order to produce quark and lepton masses, technicolor or composite Higgs models have to be "extended" by additional gauge interactions. Particularly when modelled on QCD, extended technicolor was challenged by experimental constraints on flavor-changing neutral current and precision electroweak measurements. The specific extensions of particle dynamics for technicolor or composite Higgs bosons are unknown.

Much technicolor research focuses on exploring strongly interacting gauge theories other than QCD, in order to evade some of these challenges. A particularly active framework is "walking" technicolor, which exhibits nearly conformal behavior caused by an infrared fixed point with strength just above that necessary for spontaneous chiral symmetry breaking. Whether walking can occur and lead to agreement with precision electroweak measurements is being studied through non-perturbative lattice simulations.[2]

Experiments at the Large Hadron Collider have discovered the mechanism responsible for electroweak symmetry breaking, i.e., the Higgs boson, with mass approximately 125 GeV/c2;[3][4][5] such a particle is not generically predicted by technicolor models. However, the Higgs boson may be a composite state, e.g., built of top and anti-top quarks as in the Bardeen–Hill–Lindner theory.[6] Composite Higgs models are generally solved by the top quark infrared fixed point, and may require a new dynamics at extremely high energies such as topcolor.

  1. ^ For introductions to and reviews of technicolor and strong dynamics, see the following:
    Christopher T. Hill & Elizabeth H. Simmons (2003). "Strong Dynamics and Electroweak Symmetry Breaking". Physics Reports. 381 (4–6): 235–402. arXiv:hep-ph/0203079. Bibcode:2003PhR...381..235H. doi:10.1016/S0370-1573(03)00140-6. S2CID 118933166.
    Kenneth Lane (2002). Two Lectures on Technicolor. l'Ecole de GIF at LAPP, Annecy-le-Vieux, France. arXiv:hep-ph/0202255. Bibcode:2002hep.ph....2255L.
    Robert Shrock (2007). "Some Recent Results on Models of Dynamical Electroweak Symmetry Breaking". In M. Tanabashi; M. Harada; K. Yamawaki (eds.). Nagoya 2006: The Origin of Mass and Strong Coupling Gauge Theories. International Workshop on Strongly Coupled Gauge Theories. pp. 227–241. arXiv:hep-ph/0703050. Bibcode:2008omsc.conf..227S. doi:10.1142/9789812790750_0023.
    Adam Martin (2008). Technicolor Signals at the LHC. The 46th Course at the International School of Subnuclear Physics: Predicted and Totally Unexpected in the Energy Frontier Opened by LHC. arXiv:0812.1841. Bibcode:2008arXiv0812.1841M.
    Francesco Sannino (2009). "Conformal Dynamics for TeV Physics and Cosmology". Acta Physica Polonica. B40: 3533–3745. arXiv:0911.0931. Bibcode:2009arXiv0911.0931S.
  2. ^ George Fleming (2008). "Strong Interactions for the LHC". Proceedings of Science. LATTICE 2008: 21. arXiv:0812.2035. Bibcode:2008arXiv0812.2035F.
  3. ^ "CERN experiments observe particle consistent with long-sought Higgs boson". CERN press release. 4 July 2012. Retrieved 4 July 2012.
  4. ^ Taylor, Lucas (4 July 2012). "Observation of a New Particle with a Mass of 125 GeV". CMS Public Web site. CERN.
  5. ^ "Latest Results from ATLAS Higgs Search". ATLAS. 4 July 2012. Archived from the original on 7 July 2012. Retrieved 4 July 2012.
  6. ^ William A. Bardeen; Christopher T. Hill & Manfred Lindner (1990). "Minimal dynamical symmetry breaking of the standard model". Physical Review. D41 (5): 1647–1660. Bibcode:1990PhRvD..41.1647B. doi:10.1103/PhysRevD.41.1647. PMID 10012522..

Developed by StudentB