Technological unemployment

In the 21st century, robots are beginning to perform roles not just in manufacturing but also in the service sector – in healthcare, for example.

Technological unemployment is the loss of jobs caused by technological change.[1][2][3][4] It is a key type of structural unemployment. Technological change typically includes the introduction of labour-saving "mechanical-muscle" machines or more efficient "mechanical-mind" processes (automation), and humans' role in these processes are minimized.[5] Just as horses were gradually made obsolete as transport by the automobile and as labourer by the tractor, humans' jobs have also been affected throughout modern history. Historical examples include artisan weavers reduced to poverty after the introduction of mechanized looms. Thousands of man-years of work was performed in a matter of hours by the bombe codebreaking machine during World War II. A contemporary example of technological unemployment is the displacement of retail cashiers by self-service tills and cashierless stores.

That technological change can cause short-term job losses is widely accepted. The view that it can lead to lasting increases in unemployment has long been controversial. Participants in the technological unemployment debates can be broadly divided into optimists and pessimists. Optimists agree that innovation may be disruptive to jobs in the short term, yet hold that various compensation effects ensure there is never a long-term negative impact on jobs, whereas pessimists contend that at least in some circumstances, new technologies can lead to a lasting decline in the total number of workers in employment. The phrase "technological unemployment" was popularised by John Maynard Keynes in the 1930s, who said it was "only a temporary phase of maladjustment".[6] The issue of machines displacing human labour has been discussed since at least Aristotle's time.[7][8]

Prior to the 18th century, both the elite and common people would generally take the pessimistic view on technological unemployment, at least in cases where the issue arose. Due to generally low unemployment in much of pre-modern history, the topic was rarely a prominent concern. In the 18th century fears over the impact of machinery on jobs intensified with the growth of mass unemployment, especially in Great Britain which was then at the forefront of the Industrial Revolution. Yet some economic thinkers began to argue against these fears, claiming that overall innovation would not have negative effects on jobs. These arguments were formalised in the early 19th century by the classical economists. During the second half of the 19th century, it stayed apparent that technological progress was benefiting all sections of society, including the working class. Concerns over the negative impact of innovation diminished. The term "Luddite fallacy" was coined to describe the thinking that innovation would have lasting harmful effects on employment.

The view that technology is unlikely to lead to long-term unemployment has been repeatedly challenged by a minority of economists.[who?] In the early 1800s these included David Ricardo himself. There were dozens of economists warning about technological unemployment during brief intensifications of the debate that spiked in the 1930s and 1960s. Especially in Europe, there were further warnings in the closing two decades of the twentieth century, as commentators noted an enduring rise in unemployment suffered by many industrialised nations since the 1970s. Yet a clear majority of both professional economists and the interested general public held the optimistic view through most of the 20th century.

In the second decade of the 21st century, a number of studies have been released suggesting that technological unemployment may increase worldwide. Oxford Professors Carl Benedikt Frey and Michael Osborne, for example, have estimated that 47 percent of U.S. jobs are at risk of automation.[9] However, their methodology has been challenged as lacking evidential foundation and criticised for implying that technology (rather than social policy) creates unemployment rather than redundancies.[10] On the PBS NewsHours the authors defended their findings and clarified they do necessarily imply future technological unemployment.[11] While many economists[who?] and commentators[who?] still argue such fears are unfounded, as was widely accepted for most of the previous two centuries, concern over technological unemployment is growing once again.[12][13][14] A report in Wired in 2017 quotes knowledgeable people such as economist Gene Sperling and management professor Andrew McAfee on the idea that handling existing and impending job loss to automation is a "significant issue".[why?][15] Recent technological innovations have the potential to displace humans in the professional, white-collar, low-skilled, creative fields, and other "mental jobs".[16][14] The World Bank's World Development Report 2019 argues that while automation displaces workers,[quantify] technological innovation creates more[quantify] new industries and jobs on balance.[17]

  1. ^ Peters, Michael A. (2020). "Beyond technological unemployment: the future of work". Educational Philosophy and Theory. 52 (5): 485–491. doi:10.1080/00131857.2019.1608625.
  2. ^ Peters, Michael A. (2017). "Technological unemployment: Educating for the fourth industrial revolution". Educational Philosophy and Theory. 49 (1): 1–6. doi:10.1080/00131857.2016.1177412. hdl:10289/10955.
  3. ^ Kim, Young Joon; Kim, Kyungsoo; Lee, SuKyoung (2017). "The rise of technological unemployment and its implications on the future macroeconomic landscape". Futures. 87: 1–9. doi:10.1016/j.futures.2017.01.003.
  4. ^ Lima, Yuri; Barbosa, Carlos Eduardo; dos Santos, Herbert Salazar; de Souza, Jano Moreira (2021). "Understanding Technological Unemployment: A Review of Causes, Consequences, and Solutions". Societies. 11 (2): 50. doi:10.3390/soc11020050.
  5. ^ Chuang, Szufang; Graham, Carroll Marion (3 September 2018). "Embracing the sobering reality of technological influences on jobs, employment and human resource development: A systematic literature review". European Journal of Training and Development. 42 (7/8): 400–416. doi:10.1108/EJTD-03-2018-0030. ISSN 2046-9012. S2CID 169359498.
  6. ^ The Economic Possibilities of our Grandchildren (1930). E McGaughey, 'Will Robots Automate Your Job Away? Full Employment, Basic Income, and Economic Democracy' (2022) 51(3) Industrial Law Journal 511, part 2(2)
  7. ^ Bhorat, Ziyaad (2022). "Automation, Slavery, and Work in Aristotle's Politics Book I". Polis: The Journal for Ancient Greek and Roman Political Thought. 39 (2): 279–302. doi:10.1163/20512996-12340366. S2CID 250252042.
  8. ^ Devecka, Martin (2013). "Did the Greeks Believe in Their Robots?". The Cambridge Classical Journal. 59: 52–69. doi:10.1017/S1750270513000079.
  9. ^ Frey, Carl Benedikt; Osborne, Michael A (1 January 2017). "The future of employment: How susceptible are jobs to computerisation?". Technological Forecasting and Social Change. 114: 254–280. CiteSeerX 10.1.1.395.416. doi:10.1016/j.techfore.2016.08.019. ISSN 0040-1625.
  10. ^ E McGaughey, 'Will Robots Automate Your Job Away? Full Employment, Basic Income, and Economic Democracy' (2022) 51(3) Industrial Law Journal 511
  11. ^ "Are we on the brink of a jobless future?". PBS NewsHour. 31 August 2017. Retrieved 15 December 2017.
  12. ^ "In the Future, Will Everyone Be Unemployed?". 4 August 2014.
  13. ^ Censky, Annalyn. "What 0% unemployment looks like". CNN.
  14. ^ a b Thompson, Derek (July–August 2015). "A World Without Work". The Atlantic. Retrieved 14 March 2018.
  15. ^ Dreyfuss, Emily (24 March 2017), "Hate to break it to Steve Mnuchin, but AI's already taking jobs", Wired
  16. ^ Porte, Eduardo; Manjoo, Farhad (9 March 2016). "A Future Without Jobs? Two Views of the Changing Work Force". The New York Times.
  17. ^ "The Changing Nature of Work". Retrieved 8 October 2018.

Developed by StudentB