Tennessine

Tennessine, 117Ts
Tennessine
Pronunciation/ˈtɛnəsn/[1] (TEN-ə-seen)
Appearancesemimetallic (predicted)[2]
Mass number[294] (data not decisive)[a]
Tennessine in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
At

Ts

livermoriumtennessineoganesson
Atomic number (Z)117
Groupgroup 17 (halogens)
Periodperiod 7
Block  p-block
Electron configuration[Rn] 5f14 6d10 7s2 7p5 (predicted)[4]
Electrons per shell2, 8, 18, 32, 32, 18, 7 (predicted)
Physical properties
Phase at STPsolid (predicted)[4][5]
Melting point623–823 K ​(350–550 °C, ​662–1022 °F) (predicted)[4]
Boiling point883 K ​(610 °C, ​1130 °F) (predicted)[4]
Density (near r.t.)7.1–7.3 g/cm3 (extrapolated)[5]
Atomic properties
Oxidation statescommon: (none)
(−1), (+5)
Ionization energies
  • 1st: 742.9 kJ/mol (predicted)[6]
  • 2nd: 1435.4 kJ/mol (predicted)[6]
  • 3rd: 2161.9 kJ/mol (predicted)[6]
  • (more)
Atomic radiusempirical: 138 pm (predicted)[5]
Covalent radius156–157 pm (extrapolated)[5]
Other properties
Natural occurrencesynthetic
CAS Number54101-14-3
History
Namingafter Tennessee region
DiscoveryJoint Institute for Nuclear Research, Lawrence Livermore National Laboratory, Vanderbilt University and Oak Ridge National Laboratory (2010)
Isotopes of tennessine
Main isotopes[3] Decay
abun­dance half-life (t1/2) mode pro­duct
293Ts synth 25 ms[3][7] α 289Mc
294Ts synth 51 ms[8] α 290Mc
 Category: Tennessine
| references

Tennessine is a synthetic chemical element; it has symbol Ts and atomic number 117. It has the second-highest atomic number and joint-highest atomic mass of all known elements and is the penultimate element of the 7th period of the periodic table. It is named after the U.S. state of Tennessee, where key research institutions involved in its discovery are located (however, the IUPAC says that the element is named after the "region of Tennessee").

The discovery of tennessine was officially announced in Dubna, Russia, by a Russian–American collaboration in April 2010, which makes it the most recently discovered element as of 2024. One of its daughter isotopes was created directly in 2011, partially confirming the results of the experiment. The experiment itself was repeated successfully by the same collaboration in 2012 and by a joint German–American team in May 2014. In December 2015, the Joint Working Party of the International Union of Pure and Applied Chemistry (IUPAC) and the International Union of Pure and Applied Physics (IUPAP), which evaluates claims of discovery of new elements, recognized the element and assigned the priority to the Russian–American team. In June 2016, the IUPAC published a declaration stating that the discoverers had suggested the name tennessine, a name which was officially adopted in November 2016.[b]

Tennessine may be located in the "island of stability", a concept that explains why some superheavy elements are more stable despite an overall trend of decreasing stability for elements beyond bismuth on the periodic table. The synthesized tennessine atoms have lasted tens and hundreds of milliseconds. In the periodic table, tennessine is expected to be a member of group 17, the halogens.[c] Some of its properties may differ significantly from those of the lighter halogens due to relativistic effects. As a result, tennessine is expected to be a volatile metal that neither forms anions nor achieves high oxidation states. A few key properties, such as its melting and boiling points and its first ionization energy, are nevertheless expected to follow the periodic trends of the halogens.

  1. ^ Ritter, Malcolm (9 June 2016). "Periodic table elements named for Moscow, Japan, Tennessee". Associated Press. Retrieved 19 December 2017.
  2. ^ Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. Structure and Bonding. 21: 89–144. doi:10.1007/BFb0116498. ISBN 978-3-540-07109-9. Retrieved 4 October 2013.
  3. ^ a b c Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  4. ^ a b c d Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 978-1-4020-3555-5.
  5. ^ a b c d Bonchev, D.; Kamenska, V. (1981). "Predicting the Properties of the 113–120 Transactinide Elements". Journal of Physical Chemistry. 85 (9): 1177–1186. doi:10.1021/j150609a021.
  6. ^ a b c Chang, Zhiwei; Li, Jiguang; Dong, Chenzhong (2010). "Ionization Potentials, Electron Affinities, Resonance Excitation Energies, Oscillator Strengths, And Ionic Radii of Element Uus (Z = 117) and Astatine". J. Phys. Chem. A. 2010 (114): 13388–94. Bibcode:2010JPCA..11413388C. doi:10.1021/jp107411s.
  7. ^ Khuyagbaatar, J.; Yakushev, A.; Düllmann, Ch. E.; et al. (2014). "48Ca+249Bk Fusion Reaction Leading to Element Z=117: Long-Lived α-Decaying 270Db and Discovery of 266Lr". Physical Review Letters. 112 (17): 172501. Bibcode:2014PhRvL.112q2501K. doi:10.1103/PhysRevLett.112.172501. PMID 24836239.
  8. ^ Oganessian, Yu. Ts.; et al. (2013). "Experimental studies of the 249Bk + 48Ca reaction including decay properties and excitation function for isotopes of element 117, and discovery of the new isotope 277Mt". Physical Review C. 87 (5): 054621. Bibcode:2013PhRvC..87e4621O. doi:10.1103/PhysRevC.87.054621.
  9. ^ Cite error: The named reference notgonnabeahalogen was invoked but never defined (see the help page).


Cite error: There are <ref group=lower-alpha> tags or {{efn}} templates on this page, but the references will not show without a {{reflist|group=lower-alpha}} template or {{notelist}} template (see the help page).


Developed by StudentB