Topological insulator

An (informal) phase diagram with topological insulators, trivial insulators, and conductors. There is no path from the topological insulators to the trivial insulators that does not cross the conducting phase. The diagram depicts a topological invariant, since there are two "islands" of insulators.
An idealized band structure for a 3D time-reversal symmetric topological insulator. The Fermi level falls within the bulk band gap which is traversed by topologically-protected spin-textured Dirac surface states.[1][2]

A topological insulator is a material whose interior behaves as an electrical insulator while its surface behaves as an electrical conductor,[3] meaning that electrons can only move along the surface of the material.

A topological insulator is an insulator for the same reason a "trivial" (ordinary) insulator is: there exists an energy gap between the valence and conduction bands of the material. But in a topological insulator, these bands are, in an informal sense, "twisted", relative to a trivial insulator.[4] The topological insulator cannot be continuously transformed into a trivial one without untwisting the bands, which closes the band gap and creates a conducting state. Thus, due to the continuity of the underlying field, the border of a topological insulator with a trivial insulator (including vacuum, which is topologically trivial) is forced to support a conducting state.[5]

Since this results from a global property of the topological insulator's band structure, local (symmetry-preserving) perturbations cannot damage this surface state.[6] This is unique to topological insulators: while ordinary insulators can also support conductive surface states, only the surface states of topological insulators have this robustness property.

This leads to a more formal definition of a topological insulator: an insulator which cannot be adiabatically transformed into an ordinary insulator without passing through an intermediate conducting state.[5] In other words, topological insulators and trivial insulators are separate regions in the phase diagram, connected only by conducting phases. In this way, topological insulators provide an example of a state of matter not described by the Landau symmetry-breaking theory that defines ordinary states of matter.[6]

The properties of topological insulators and their surface states are highly dependent on both the dimension of the material and its underlying symmetries, and can be classified using the so-called periodic table of topological insulators. Some combinations of dimension and symmetries forbid topological insulators completely.[7] All topological insulators have at least U(1) symmetry from particle number conservation, and often have time-reversal symmetry from the absence of a magnetic field. In this way, topological insulators are an example of symmetry-protected topological order.[8] So-called "topological invariants", taking values in  or , allow classification of insulators as trivial or topological, and can be computed by various methods.[7]

The surface states of topological insulators can have exotic properties. For example, in time-reversal symmetric 3D topological insulators, surface states have their spin locked at a right-angle to their momentum (spin-momentum locking). At a given energy the only other available electronic states have different spin, so "U"-turn scattering is strongly suppressed and conduction on the surface is highly metallic.

Despite their origin in quantum mechanical systems, analogues of topological insulators can also be found in classical media. There exist photonic,[9] magnetic,[10] and acoustic[11] topological insulators, among others.

  1. ^ Moore, Joel E. (2010). "The birth of topological insulators". Nature. 464 (7286): 194–198. Bibcode:2010Natur.464..194M. doi:10.1038/nature08916. ISSN 0028-0836. PMID 20220837. S2CID 1911343.
  2. ^ Hasan, M.Z.; Moore, J.E. (2011). "Three-Dimensional Topological Insulators". Annual Review of Condensed Matter Physics. 2: 55–78. arXiv:1011.5462. Bibcode:2011ARCMP...2...55H. doi:10.1146/annurev-conmatphys-062910-140432. S2CID 11516573.
  3. ^ Kane, C. L.; Mele, E. J. (2005). "Z2 Topological Order and the Quantum Spin Hall Effect". Physical Review Letters. 95 (14): 146802. arXiv:cond-mat/0506581. Bibcode:2005PhRvL..95n6802K. doi:10.1103/PhysRevLett.95.146802. PMID 16241681. S2CID 1775498.
  4. ^ Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlögl, Udo (2012-06-01). "Band inversion mechanism in topological insulators: A guideline for materials design". Physical Review B. 85 (23): 235401. Bibcode:2012PhRvB..85w5401Z. doi:10.1103/PhysRevB.85.235401. hdl:10754/315777. ISSN 1098-0121.
  5. ^ a b Qi, Xiao-Liang; Zhang, Shou-Cheng (2011-10-14). "Topological insulators and superconductors". Reviews of Modern Physics. 83 (4): 1057–1110. arXiv:1008.2026. Bibcode:2011RvMP...83.1057Q. doi:10.1103/RevModPhys.83.1057. ISSN 0034-6861. S2CID 118373714.
  6. ^ a b Hasan, M. Z.; Kane, C. L. (2010-11-08). "Colloquium: Topological insulators". Reviews of Modern Physics. 82 (4): 3045–3067. arXiv:1002.3895. Bibcode:2010RvMP...82.3045H. doi:10.1103/RevModPhys.82.3045. S2CID 16066223.
  7. ^ a b Kitaev, Alexei (2009-05-14). "Periodic table for topological insulators and superconductors". AIP Conference Proceedings. 1134 (1): 22–30. arXiv:0901.2686. Bibcode:2009AIPC.1134...22K. doi:10.1063/1.3149495. ISSN 0094-243X. S2CID 14320124.
  8. ^ Senthil, T. (2015-03-01). "Symmetry-Protected Topological Phases of Quantum Matter". Annual Review of Condensed Matter Physics. 6 (1): 299–324. arXiv:1405.4015. Bibcode:2015ARCMP...6..299S. doi:10.1146/annurev-conmatphys-031214-014740. ISSN 1947-5454. S2CID 12669555.
  9. ^ Khanikaev, Alexander B.; Hossein Mousavi, S.; Tse, Wang-Kong; Kargarian, Mehdi; MacDonald, Allan H.; Shvets, Gennady (March 2013). "Photonic topological insulators". Nature Materials. 12 (3): 233–239. arXiv:1204.5700. Bibcode:2013NatMa..12..233K. doi:10.1038/nmat3520. ISSN 1476-4660. PMID 23241532. S2CID 39748656.
  10. ^ Tokura, Yoshinori; Yasuda, Kenji; Tsukazaki, Atsushi (February 2019). "Magnetic topological insulators". Nature Reviews Physics. 1 (2): 126–143. Bibcode:2019NatRP...1..126T. doi:10.1038/s42254-018-0011-5. ISSN 2522-5820. S2CID 53694955.
  11. ^ He, Cheng; Ni, Xu; Ge, Hao; Sun, Xiao-Chen; Chen, Yan-Bin; Lu, Ming-Hui; Liu, Xiao-Ping; Chen, Yan-Feng (December 2016). "Acoustic topological insulator and robust one-way sound transport". Nature Physics. 12 (12): 1124–1129. arXiv:1512.03273. Bibcode:2016NatPh..12.1124H. doi:10.1038/nphys3867. ISSN 1745-2473. S2CID 119255437.

Developed by StudentB