In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by AT (among other notations).[1]
The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley.[2] In the case of a logical matrix representing a binary relation R, the transpose corresponds to the converse relation RT.