Tropospheric propagation

Diagram of the different layers of the atmosphere.

Tropospheric propagation describes electromagnetic propagation in relation to the troposphere. The service area from a VHF or UHF radio transmitter extends to just beyond the optical horizon, at which point signals start to rapidly reduce in strength. Viewers living in such a "deep fringe" reception area will notice that during certain conditions, weak signals normally masked by noise increase in signal strength to allow quality reception. Such conditions are related to the current state of the troposphere.

Tropospheric propagated signals travel in the part of the atmosphere adjacent to the surface and extending to some 25,000 feet (8 km). Such signals are thus directly affected by weather conditions extending over some hundreds of miles. During very settled, warm anticyclonic weather (i.e., high pressure), usually weak signals from distant transmitters improve in strength. Another symptom during such conditions may be interference to the local transmitter resulting in co-channel interference, usually horizontal lines or an extra floating picture with analog broadcasts and break-up with digital broadcasts. A settled high-pressure system gives the characteristic conditions for enhanced tropospheric propagation, in particular favouring signals which travel along the prevailing isobar pattern (rather than across it). Such weather conditions can occur at any time, but generally the summer and autumn months are the best periods. In certain favourable locations, enhanced tropospheric propagation may enable reception of ultra high frequency (UHF) TV signals up to 1,000 miles (1,600 km) or more.

The observable characteristics of such high-pressure systems are usually clear, cloudless days with little or no wind. At sunset the upper air cools, as does the surface temperature, but at different rates. This produces a boundary or temperature gradient, which allows an inversion level to form – a similar effect occurs at sunrise. The inversion is capable of allowing very high frequency (VHF) and UHF signal propagation well beyond the normal radio horizon distance.

The inversion effectively reduces sky wave radiation from a transmitter – normally VHF and UHF signals travel on into space when they reach the horizon, the refractive index of the ionosphere preventing signal return. With temperature inversion, however, the signal is to a large extent refracted over the horizon rather than continuing along a direct path into outer space.

Fog also produces good tropospheric results, again due to inversion effects. Fog occurs during high-pressure weather, and if such conditions result in a large belt of fog with clear sky above, there will be heating of the upper fog level and thus an inversion. This situation often arises towards night fall, continues overnight and clears with the sunrise over a period of around 4 – 5 hours.


Developed by StudentB