This article needs additional citations for verification. (June 2020) |
Part of a series on |
Physical cosmology |
---|
Futures studies |
---|
Concepts |
Techniques |
Technology assessment and forecasting |
Related topics |
The ultimate fate of the universe is a topic in physical cosmology, whose theoretical restrictions allow possible scenarios for the evolution and ultimate fate of the universe to be described and evaluated. Based on available observational evidence, deciding the fate and evolution of the universe has become a valid cosmological question, being beyond the mostly untestable constraints of mythological or theological beliefs. Several possible futures have been predicted by different scientific hypotheses, including that the universe might have existed for a finite and infinite duration, or towards explaining the manner and circumstances of its beginning.
Observations made by Edwin Hubble during the 1930s–1950s found that galaxies appeared to be moving away from each other, leading to the currently accepted Big Bang theory. This suggests that the universe began very dense about 13.787 billion years ago, and it has expanded and (on average) become less dense ever since.[1] Confirmation of the Big Bang mostly depends on knowing the rate of expansion, average density of matter, and the physical properties of the mass–energy in the universe.
There is a strong consensus among cosmologists that the shape of the universe is considered "flat" (parallel lines stay parallel) and will continue to expand forever.[2][3]
Factors that need to be considered in determining the universe's origin and ultimate fate include the average motions of galaxies, the shape and structure of the universe, and the amount of dark matter and dark energy that the universe contains.