Umdeutung paper


In the history of physics, "On the quantum-theoretical reinterpretation of kinematical and mechanical relationships" (German: Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen), also known as the Umdeutung (reinterpretation) paper,[1][2] was a breakthrough article in quantum mechanics written by Werner Heisenberg, which appeared in Zeitschrift für Physik in September 1925.

In the article, Heisenberg tried to explain the energy levels of a one-dimensional anharmonic oscillator, avoiding the concrete but unobservable representations of electron orbits by using observable parameters such as transition probabilities for quantum jumps, which necessitated using two indexes corresponding to the initial and final states.[3]

Mathematically, Heisenberg showed the need of non-commutative operators. This insight would later become the basis for Heisenberg's uncertainty principle.

This article was followed by the paper by Pascual Jordan and Max Born of the same year,[4] and by the 'three-man paper' (German: drei Männer Arbeit) by Born, Heisenberg and Jordan in 1926.[5][1][6] These articles laid the groundwork for matrix mechanics that would come to substitute old quantum theory, leading to the modern quantum mechanics. Heisenberg received the Nobel Prize in Physics in 1932 for his work on developing quantum mechanics.[7]

  1. ^ a b Duncan, Anthony; Janssen, Michel (2023). "Heisenberg's Umdeutung Paper". Constructing Quantum Mechanics. Vol. 2. Oxford: Oxford Academic. pp. 209–254. doi:10.1093/oso/9780198883906.003.0004. ISBN 978-0-19-888390-6.
  2. ^ Kragh, Helge (2012-05-03). Niels Bohr and the Quantum Atom: The Bohr Model of Atomic Structure 1913-1925. OUP Oxford. ISBN 978-0-19-163046-0.
  3. ^ Emilio Segrè, From X-Rays to Quarks: Modern Physicists and their Discoveries. W. H. Freeman and Company, 1980. ISBN 0-7167-1147-8, pp. 153–157.
  4. ^ Cite error: The named reference :1 was invoked but never defined (see the help page).
  5. ^ Cite error: The named reference :2 was invoked but never defined (see the help page).
  6. ^ Physics, American Institute of. "Heisenberg / Uncertainty". history.aip.org. Retrieved 2024-03-05.
  7. ^ "The Nobel Prize in Physics 1932". NobelPrize.org. Retrieved 2024-03-05.

Developed by StudentB