Vitrification

Vitrification (from Latin vitrum 'glass', via French vitrifier) is the full or partial transformation of a substance into a glass,[1] that is to say, a non-crystalline or amorphous solid. Glasses differ from liquids structurally and glasses possess a higher degree of connectivity with the same Hausdorff dimensionality of bonds as crystals: dimH = 3.[2] In the production of ceramics, vitrification is responsible for their impermeability to water.[3]

Vitrification is usually achieved by heating materials until they liquidize, then cooling the liquid, often rapidly, so that it passes through the glass transition to form a glassy solid. Certain chemical reactions also result in glasses.

In terms of chemistry, vitrification is characteristic for amorphous materials or disordered systems and occurs when bonding between elementary particles (atoms, molecules, forming blocks) becomes higher than a certain threshold value.[4] Thermal fluctuations break the bonds; therefore, the lower the temperature, the higher the degree of connectivity. Because of that, amorphous materials have a characteristic threshold temperature termed glass transition temperature (Tg): below Tg amorphous materials are glassy whereas above Tg they are molten.

The most common applications are in the making of pottery, glass, and some types of food, but there are many others, such as the vitrification of an antifreeze-like liquid in cryopreservation.

In a different sense of the word, the embedding of material inside a glassy matrix is also called vitrification. An important application is the vitrification of radioactive waste to obtain a substance that is thought to be safer and more stable for disposal.

One study suggests[5][6][7][8] during the eruption of Mount Vesuvius in 79 AD, a victim's brain was vitrified by the extreme heat of the volcanic ash; however, this has been strenuously disputed.[9]

  1. ^ Varshneya, A. K. (2006). Fundamentals of Inorganic Glasses. Sheffield: Society of Glass Technology.
  2. ^ Richet, Pascal (2021). Encyclopedia of glass science, technology, history, and culture. Hoboken, New Jersey: American Ceramic Society. ISBN 978-1-118-79949-9. OCLC 1228229824.
  3. ^ Dodd, Arthur; Murfin, David (1994). Dictionary of Ceramics (3rd ed.). London: Institute of Minerals. ISBN 0901716561.
  4. ^ Ojovan, M. I.; Lee, W. E. (2010). "Connectivity and glass transition in disordered oxide systems". Journal of Non-Crystalline Solids. 356 (44–49): 2534–2540. Bibcode:2010JNCS..356.2534O. doi:10.1016/j.jnoncrysol.2010.05.012.
  5. ^ Petrone, Pierpaolo; Pucci, Piero; Niola, Massimo; Baxter, Peter J.; Fontanarosa, Carolina; Giordano, Guido; et al. (2020). "Heat-Induced Brain Vitrification from the Vesuvius Eruption in C.E. 79". The New England Journal of Medicine. 382 (4): 383–384. doi:10.1056/NEJMc1909867. PMID 31971686.
  6. ^ Petrone, Pierpaolo; Pucci, Piero; Niola, Massimo; Baxter, Peter J.; Fontanarosa, Carolina; Giordano, Guido; et al. (23 January 2020). "Supplementary Appendix to: Petrone P, Pucci P, Niola M, et al. Heat-induced brain vitrification from the Vesuvius eruption in c.e. 79" (PDF). The New England Journal of Medicine. 382 (4): 383–384. doi:10.1056/NEJMc1909867. PMID 31971686. Retrieved 13 September 2020.
  7. ^ Pinkowski, Jennifer (23 January 2020). "Brains Turned to Glass? Suffocated in Boathouses? Vesuvius Victims Get New Look". The New York Times. Retrieved 2020-09-13.
  8. ^ "Mount Vesuvius eruption: Extreme heat 'turned man's brain to glass'". BBC News. BBC. 23 January 2020. Retrieved 2020-01-24.
  9. ^ Morton-Hayward, Alexandra L.; Thompson, Tim; Thomas-Oates, Jane E.; Buckley, Stephen; Petzold, Axel; Ramsøe, Abigail; O’Connor, Collins; O’Connor, Matthew J. (2020). "A conscious rethink: Why is brain tissue commonly preserved in the archaeological record? Commentary on: Petrone P, Pucci P, Niola M, et al. Heat-induced brain vitrification from the Vesuvius eruption in C.E. 79. N Engl J Med 2020;382:383-4. DOI: 10.1056/NEJMc1909867". TSTAR: Science & Technology of Archaeological Research. 6 (1): 87–95. Bibcode:2020STAR....6...87M. doi:10.1080/20548923.2020.1815398.

Developed by StudentB