Yu Mao-Hong

Yu Mao-Hong (2015)

Yu Mao-Hong (Chinese: 俞茂宏, b. 1934) is a Chinese engineer and a university professor. He is noted for his research on the strength criteria and yield surfaces of isotropic materials.[1][2][3][4] His unified strength theory (UST) has found acceptance as generalized classical strength theory.[5][6] It contains the following strength theories (hypotheses) and criteria as a function of the equivalent stress without any additional parameters:

and three one-parameter (in addition to the equivalent stress ) criteria: the Mohr–Coulomb theory (Single-Shear-Theory (SST)), the Sdobyrev[10] (Pisarenko-Lebedev)[11][12] criterion, and the Twin-Shear-Theory (TST). The Unified Yield Criterion (UYC) as a part of the UST is used in the theory of plasticity (physics).

  1. ^ Teodorescu, P.P. (București). (2006). Review: Unified Strength Theory and its applications, Zentralblatt MATH Database 1931–2009, European Mathematical Society, Zbl 1059.74002, FIZ Karlsruhe & Springer-Verlag
  2. ^ Fan, S. C., Qiang, H. F. (2001). Normal high-velocity impaction concrete slabs-a simulation using the meshless SPH procedures. Computational Mechanics-New Frontiers for New Millennium, Valliappan S. and Khalili N. eds. Elsevier Science Ltd, pp. 1457–1462
  3. ^ Zhang, C. Q., Zhou, H., Feng, X. T. (2008). Numerical format of elastoplastic constitutive model based on the unified strength theory in FLAC3D (in Chinese). Rock and Soil Mechanics, 29(3), pp. 596-601
  4. ^ Zhao, G.-H.; Ed., (2006) Handbook of Engineering Mechanics, Rock Mechanics, Engineering Structures and Materials (in Chinese), China's Water Conservancy Resources and Hydropower Press, Beijing, pp. 20-21
  5. ^ Altenbach, H., Bolchoun, A., Kolupaev, V.A. (2013). Phenomenological Yield and Failure Criteria, in Altenbach, H., Öchsner, A., eds., Plasticity of Pressure-Sensitive Materials, Serie ASM, Springer, Heidelberg, pp. 49-152. ISBN 978-3-642-40944-8
  6. ^ Kolupaev, V. A., Altenbach, H. (2010). Considerations on the Unified Strength Theory due to Mao-Hong Yu (in German: Einige Überlegungen zur Unified Strength Theory von Mao-Hong Yu), Forschung im Ingenieurwesen, 74(3), pp. 135-166. doi:10.1007/s10010-010-0122-3
  7. ^ Kolupaev, V. A., Yu, M.-H., Altenbach, H. (2013). Yield Criteria of Hexagonal Symmetry in the π-plane, Acta Mechanica, 224(7), pp. 1527–1540. doi:10.1007/s00707-013-0830-5
  8. ^ Schmidt, R. (1932). Über den Zusammenhang von Spannungen und Formänderungen im Verfestigungsgebiet. Ingenieur-Archiv, 3(3), pp. 215-235.
  9. ^ Ishlinsky, A. Yu. (1940). Hypothesis of Strength of Shape Change (in Russ.: Gipoteza prochnosti formoizmenenija). Uchebnye Zapiski Moskovskogo Universiteta, Mekhanika, 46, pp. 104-114.
  10. ^ Sdobyrev, V. P. (1959). Criterion for the long term strength of some heat-resistant alloys at a multiaxial loading (in Russ.: Kriterij dlitelnoj prochnosti dlja nekotorykh zharoprochnykh splavov pri slozhnom naprjazhennom sostojanii). Izvestija Akademii Nauk SSSR, Otdelenie tekhnicheskikh Nauk, Mechanika i Mashinostroenie, 6, pp. 93-99.
  11. ^ Pisarenko, G. S., Lebedev, A. A.. (1969). Deformation and Fracture of Materials under Combined Stress (in Russ.: Soprotivlenie materialov deformirovaniju i razrusheniju pri slozhnom naprjazhennom sostojanii). Naukowa Dumka, Kiev.
  12. ^ Pisarenko, G. S., Lebedev, A. A.. (1976). Deformation and Strength of Materials under Complex Stress State (in Russ.: Deformirovanie i prochnost' materialov pri slozhnom nap\-rjazhennom sostojanii). Naukowa Dumka, Kiev.

Developed by StudentB