Ĉi tiu artikolo temas pri aro da lineare sendependaj vektoroj kies lineara kombinaĵo povas egali al iu ajn vektoro en donita spaco. Koncerne aliajn signifojn aliru la apartigilon Bazo. |
Algebraj strukturoj | |
---|---|
Grupo-similaj Grupo-teorio
Duvalenta operacio
A Asocieco • N Neŭtrala elemento • I Inversa elemento • K KomutecoAbela grupo (ANIK) • Grupo (ANI) • Monoido (AN) • Duongrupo (A) • Magmo Kvazaŭgrupo • Lopo • Lie-grupo • Cikla grupo • Simetria grupo Grupa homomorfio • Normala subgrupo | |
Ringo-similaj
| |
Modulo-similaj
| |
En lineara algebro, bazo estas minimuma aro da vektoroj, kiuj, kiam kombinitaj, povas adresi ĉiun vektoron en donita spacon. Pli detale, bazo de vektora spaco estas aro da lineare sendependaj vektoroj, kiu generas la tutan spacon.