Kontinua funkcio

Matematikaj funkcioj
Aroj: fonta aro, argumentaro, bildaro, cela aro (suma klarigo) • malbildo
Fundamentaj funkcioj
Algebraj funkcioj:
konstantalinearakvadratapolinomaracionalaTransformo de Möbius
Aliaj funkcioj:
trigonometriajinversa trigonometriahiperbolaeksponentalogaritmapotenca
Specialaj funkcioj
eraraβΓζηW de Lambertde Bessel
Nombroteoriaj funkcioj:
τσde Möbiusφπλ
Ecoj:
totaleco kaj partecopareco kaj malparecomonotonecobaritecoperiodecodisĵetecosurĵetecodissurĵeteco
kontinuecoderivaĵecointegralebleco

En matematiko, kontinua funkcio estas funkcio, kies valoro malmulte ŝanĝiĝas en okazo de malgranda ŝanĝo de la argumento. Se malgranda ŝanĝo de la argumento povas produkti rompan salton en valoro de la funkcio, la funkcio estas nekontinua. La ĉirkaŭteksto de ĉi tiu termino estas reelo-valoraj funkcioj sur la reela domajno aŭ sur topologia aŭ metrika spacoj escepte la kompleksajn nombrojn. Pri komplekso-valoraj funkcioj vidu artikolon kompleksa analitiko. La rimarkinda diferenco en maniero estas tiu ke en la reela domajno, la punktoj en la domajno kiuj estas punktoj de nekontinueco estas specialaĵoj. Sed en la kompleksa domajno tiaj punktoj estas kutime aparte forprenitaj el la domajno, do la funkcio kontinua en kompleksa domajno estas kontinua sur malkonektita partoj de reela domajno.


Developed by StudentB