Flujo Taylor-Couette

En dinámica de fluidos, el flujo de Taylor-Couette consiste en un fluido viscoso confinado en el espacio entre dos cilindros giratorios. Para velocidades angulares bajas, medidas por el número de Reynolds Re, el flujo es constante y puramente azimutal. Este estado básico se conoce como flujo circular de Couette, en honor a Maurice Couette, quien utilizó este dispositivo experimental como medio para medir la viscosidad. Sir Geoffrey Ingram Taylor investigó la estabilidad del flujo de Couette en un artículo innovador.[1]​ El artículo de Taylor se convirtió en una piedra angular en el desarrollo de la teoría de la estabilidad hidrodinámica y demostró que la condición de no deslizamiento, que estaba en disputa por la comunidad científica en ese momento, era la condición límite correcta para los flujos viscosos en un límite sólido.

Configuración de un sistema Taylor-Couette

Taylor demostró que cuando la velocidad angular del cilindro interior aumenta por encima de cierto umbral, el flujo de Couette se vuelve inestable y surge un estado estable secundario caracterizado por vórtices toroidales axisimétricos, conocido como flujo de vórtice de Taylor. Posteriormente, al aumentar la velocidad angular del cilindro, el sistema sufre una progresión de inestabilidades que conducen a estados de mayor complejidad espacio-temporal, siendo el siguiente estado denominado flujo de vórtice ondulado. Si los dos cilindros giran en sentido opuesto, surge un flujo de vórtice en espiral. Más allá de cierto número de Reynolds, se produce la aparición de turbulencias.

El flujo circular Couette tiene amplias aplicaciones que van desde la desalinización hasta la magnetohidrodinámica y también en el análisis viscosimétrico. Se han categorizado diferentes regímenes de flujo a lo largo de los años, incluidos los vórtices de Taylor retorcidos y los límites de flujo de salida ondulados. Ha sido un flujo bien investigado y documentado en dinámica de fluidos.[2]

  1. Taylor, Geoffrey I. (1923). «Stability of a viscous liquid contained between two rotating cylinders». Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 223 (605–615): 289-343. Bibcode:1923RSPTA.223..289T. JSTOR 91148. doi:10.1098/rsta.1923.0008. 
  2. Andereck, C.D.; Liu, S.S.; Swinney, H.L. (1986). «Flow regimes in a circular Couette system with independently rotating cylinders». Journal of Fluid Mechanics 164: 155-183. Bibcode:1986JFM...164..155A. doi:10.1017/S0022112086002513. 

Developed by StudentB