El torio es un elemento químico, de símbolo Th y número atómico 90, de la serie de los actínidos. Se encuentra en estado natural en los minerales monacita, torita y torianita. En estado puro es un metal blando de color blanco-plata que se oxida lentamente. Si se tritura finamente y se calienta, arde y emite luz blanca.[1]
El torio pertenece a la familia de las sustancias radiactivas, si bien su periodo de semidesintegración es extremadamente largo. Su potencial como combustible nuclear, como material fértil, se debe a que presenta una alta sección eficaz frente a neutrones lentos (térmicos), derivando en protactinio-233, que rápidamente se desintegra en uranio-233, el cual es un isótopo fisible que puede sostener una reacción nuclear en cadena. Esta aplicación todavía está en fase de desarrollo.
El torio fue descubierto en 1828 por el mineralogista aficionado noruego Morten Thrane Esmark e identificado por el químico sueco Jöns Jacob Berzelius, quien le puso el nombre de Thor, la deidad germánica Dios del trueno. Sus primeras aplicaciones se desarrollaron a finales del siglo XIX. La radiactividad del torio fue ampliamente reconocida durante las primeras décadas del siglo XX. En la segunda mitad del siglo, el torio fue reemplazado en muchos usos debido a preocupaciones sobre su radiactividad.
El torio todavía se usa como elemento de aleación en los electrodos de soldadura TIG, pero se está reemplazando lentamente en el campo con diferentes composiciones. También fue material en óptica de alta gama e instrumentación científica, utilizado en algunos tubos de vacío de transmisión, y como fuente de luz en manto de gas, pero estos usos se han vuelto marginales. Se ha sugerido como un reemplazo para el uranio como combustible nuclear en reactores nucleares, y se han construido varios reactores de torio. El torio también se usa para fortalecer magnesio, recubrir tungsteno alambre en equipos eléctricos, controlar el tamaño de grano de tungsteno en lámparas eléctricas, crisoles de alta temperatura y gafas, incluidas lentes de cámaras e instrumentos científicos. Otros usos del torio incluyen cerámicas resistentes al calor, motores de aviones y en bombillas. La ciencia oceánica ha utilizado 231Pa/230Th proporciones de isótopos para comprender el océano antiguo.[2]