Vector

Representación gráfica de un vector como un segmento orientado sobre una recta.

En matemática, un vector fijo es un segmento de recta orientado en el espacio euclídeo. La longitud de dicho segmento se denomina módulo del vector, que es siempre un número no negativo. La recta que lo contiene se denomina recta soporte. Cualquiera de las rectas paralelas a esta, o bien sus semirrectas que apuntan en el mismo sentido dado por la orientación del vector, determinan la dirección del vector.[a]​ Para muchas aplicaciones el punto inicial es irrelevante, por lo que no se hace distinción entre dos vectores que tienen el mismo módulo y dirección; se consideran equivalentes aunque su punto inicial sea diferente.[1]​ La clase de equivalencia de todos los vectores fijos de igual módulo y dirección se denomina vector libre o simplemente vector[2][b]​.

En física los vectores se emplean para describir las magnitudes vectoriales, a diferencia de las magnitudes escalares, que se pueden expresar simplemente con un número. Por ejemplo, para determinar la velocidad de un objeto en movimiento, como un automóvil, no basta con una cantidad en kilómetros o millas por hora (lo que marca el velocímetro, que sería el módulo de la velocidad) sino que es necesario describir también la dirección en la que se produce dicho movimiento. Otros ejemplos de magnitudes vectoriales son la fuerza, el desplazamiento o el campo eléctrico.

Ejemplo de las componentes de un vector en 3 dimensiones. El punto final del vector se obtiene al desplazarse « veces» por , « veces» por y « veces» por .

Un vector fijo queda completamente determinado por un punto inicial y un punto final ; o alternativamente por el punto inicial, el módulo y la dirección. Dado un sistema de coordenadas del espacio -dimensional (un punto origen y una base de vectores), el vector correspondiente (módulo y dirección) queda unívocamente determinado mediante números, llamados componentes del vector. Estos se obtienen al restar, una por una, cada coordenada del punto final menos la correspondiente del punto inicial (). El conjunto de todos los posibles vectores en el espacio -dimensional se denota como , y se compone de todas las -tuplas de números reales.[3]​ Estos vectores reales se generalizan de forma natural a los vectores complejos, que son -tuplas de números complejos (y cuyo conjunto se denota ).[4]

Dos vectores se pueden sumar, sumando las componentes correspondientes, para obtener un tercero. El vector resultante es el obtenido al concatenar uno a continuación del otro. Un vector también se puede multiplicar por un escalar (un número ), multiplicando cada componente por dicho número. El vector que se obtiene de esta operación tiene la misma dirección, pero su módulo resulta multiplicado por , es decir, se escala por un factor . Juntando ambas operaciones se obtienen combinaciones lineales de vectores.[5]

En álgebra abstracta se define el concepto más general de espacio vectorial sobre un cuerpo : un conjunto dotado de dos operaciones que se comportan como la suma de vectores y el producto por escalares (elementos de ) de los vectores geométricos. En este contexto, un vector se define como un elemento de un espacio vectorial. Los espacios euclídeos de dimensión finita, como el plano o el espacio tridimensional , son casos particulares de este tipo de estructura matemática en lo que se refiere al álgebra (sus dos operaciones).[6]​ No obstante, la generalización de otras características geométricas de los vectores, como el módulo o el ángulo entre vectores requieren de otras estructuras adicionales (norma, producto escalar...) que no todos los espacios vectoriales poseen.[7]


Error en la cita: Existen etiquetas <ref> para un grupo llamado «lower-alpha», pero no se encontró la etiqueta <references group="lower-alpha"/> correspondiente.

  1. (Shafarevich y Remizov, 2013, p. 79-81)
  2. (Marsden y Tromba, 2003, pp. 7)
  3. (Strang, 2009, §3.1)
  4. (Strang, 2009, §10.1)
  5. (Marsden y Tromba, 2003, §1.1)
  6. (Meyer, 2000, §4.1)
  7. (MacCluer, 2009, p. 2)

Developed by StudentB