Matematikan, biderketa da multzo bateko elementu-bikote bakoitzari multzoko beste elementu bat esleitzen dion eragiketa aritmetikoa, ikurrez adierazi ohi dena[1]. Biderketak hartzen dituen elementuak biderkagaiak edo faktoreak direla esaten da. Biderketaren emaitzari biderkadura deritzo.
Biderketa oinarrizkoena zenbaki arrunten artekoa da, eta batuketa errepikatutzat har daiteke; hau da, zenbaki bat beste zenbaki batek adierazitako adina aldiz bere buruarekin batzean datza.
Adibidez, 3 eta 4 zenbakien arteko biderketa idazten da, eta “3 bider 4” irakurtzen. Emaitza hiru aldiz 4 zenbakia batuz lortzen da:Hemen, 3 eta 4 biderkagaiak dira, eta 12 biderkadura da. Zenbaki arrunten arteko biderketen propietate nagusietako bat trukakortasuna da. Hau da, aurreko adibidean, 4 aldiz 3 zenbakia batuta emaitza bera lortuko dugu:
Oinarrizko definizio hori orokortuz, zenbaki osoen (zenbaki negatiboak barne), zenbaki arrazionalen (zatikiak) eta zenbaki errealen biderketa definitzen da.
Zenbakien biderkadura uler daiteke luzera horiek dituzten aldeek sortutako laukizuzen baten azalera moduan ere.
Biderketaren alderantzizko eragiketa zatiketa da. Adibidez, 4 bider 3 eginda 12 denez, 12 zati 3 eginez gero, 4 lortzen da. Bestela esanda, 3rekin biderkatzeak eta ondoren 3rekin zatitzeak jatorrizko zenbakia ematen du. 0 ez den zenbaki bat bere buruaz zatitzean, emaitza 1 da.
Zenbait kontzeptu matematikok biderketaren oinarrizko ideia orokortzen dute beste egitura batzuetan erabili ahal izateko. Esaterako, segideen, bektoreen, zenbaki konplexuen edo matrizeen arteko biderketa modu honetan definitzen dira.