Matematikan, gamma funtzioa faktorial kontzeptua zenbaki erreal eta konplexuetara zabaltzen duen aplikazioa da.[1] Greziako gamma letra maiuskularen sinboloarekin adierazten da: .
Notazioa Adrien-Marie Legendre-k proposatu zuen. Zenbaki konplexuaren zati erreala positiboa bada, integralak
guztiz bat egiten du; integral hori plano konplexu osora zabal daiteke, negatibo eta zero diren osoetan izan ezik. Orduan
funtzio horrek faktorearekin duen erlazioa erakusten digu. Hain zuzen, gamma funtzioak faktorialaren kontzeptu -ren edozein balio konplexutara hedatzen du. Gamma funtzioa probabilitate-banaketaren zenbait funtziotan agertzen da, eta, beraz, nahiko erabilia da bai probabilitatean, bai estatistikan, bai konbinatorian.