Ikasketa automatikoa eta Datu-meatzaritza |
---|
Artikulu honek erreferentziak behar ditu. Hemen erreferentzia egiaztagarriak gehituz lagun dezakezu. |
Ikaskuntza sakona (ingelesez: deep learning), egitura sakoneko ikaskuntza edo ikaskuntza hierarkikoa ikasketa automatikoko metodo bat da. Ez da ataza espezifiko bat ebazteko algoritmoa, modu automatikoan eta datuetatik abiatuz ikasteko sortutako metodoa baizik.
Ikaskuntza sakona nerbio-sistema biologikoetan informazioaren prozesamendua nola gertatzen den eta komunikazio-eredua zein izan litekeen interpretatuz sortutako ikaskuntza-metodo konputazionala da. Neurozientzien alorrean egindako ikerketa-lanek diotenez, burmuinetan informazioa neurona izeneko zeluletan eta haien artean osatutako neurona-sareetan prozesatzen eta gordetzen da, eta oso garrantzitsuak dira neuronen arteko loturak eta haien arteko estimulu eta neurona-erantzunak (sinapsia).
Izaki bizidunek ikasteko dugun gaitasun hori metodo konputazional baten bidez simulatzeko asmoz, neurona-sare biologikoak inspirazio iturri hartu eta neurona-sare artifizialak diseinatu ziren (ingelesez Artificial neural networks (ANNs)). Hasierako eredu konputazional haren garapenetik sortu dira ikaskuntza sakoneko hainbat arkitektura: neurona-sare sakona (deep neural network (DNN)), uste-sare sakona (deep belief network (DBN)) eta neurona-sare errepikaria (recurrent neural network (RNN)). Modu automatikoan ikasteko eredu horiek hainbat aplikazio-eremutan erabiliak izan dira eta lortutako emaitzak giza-adituek lortutakoekin alderagarriak edota hobeak izan dira. Aplikazio-eremu horietako batzuk honakoak dira: ikusmen artifiziala, hizketa-ezagutze automatikoa, hizkuntzaren prozesamendua, audio-ezagutze automatikoa, sare sozialen iragazketa, itzulpengintza automatikoa, bioinformatika eta sendagaien diseinua.
Ikaskuntza gainbegiratua, partzialki gainbegiratua edo gainbegiratu gabea izan daiteke.