Zenbaki arrunt

0,1,2,3,4
ta osteko denak
izenak dion gisan
dira ARRUNTenak
duguna zenbatzeko
balio dutenak

Zenbakiak matematikan
Zenbaki multzoak

Zenbaki arruntak
Zenbaki osoak
Zenbaki arrazionalak
Zenbaki irrazionalak
Zenbaki errealak
Zenbaki konplexuak
Zenbaki aljebraikoak
Zenbaki transzendenteak

Konplexuen hedadurak

Koaternioiak
Oktonioiak
Zenbaki hiperkonplexuak

Bestelakoak

Zenbaki kardinalak
Zenbaki ordinalak
Zenbaki lehenak
π = 3.141592654…
e = 2.718281828…
i unitate irudikaria
infinitua
Φ = 1,6180339887...

Zenbaki-sistemak

Zenbaki-sistema hamartarra
Zenbaki-sistema bitarra
Zenbaki-sistema hamaseitarra
Zenbaki-sistema zortzitarra

Zenbaki arruntak multzo bateko elementuak zenbatzeko erabiltzen diren zenbakiak dira: 0, 1, 2, 3, 4, 5, 6...

Matematikari batzuek (zenbaki-teoriari ekin ziotenak) zero arrunta ez dela deritzote, baina beste batzuk ez dira uste berekoak (multzo-teoria, logika eta informatikari ekin ziotenak). Entziklopedia honetan, zero arrunta dela kontuan hartuko dugu.

Definizioa

  • Definizioa zerorik gabe :
  • Definizioa zeroarekin:

Zenbaki arruntak zer diren edonork dakien arren, haren definizioa ez da inolaz ere erraza. Peano-ren axiomak zenbaki arrunten multzoa, , adiera bakarreko moduan deskribatzen dute:

  • Zero zenbaki arrunta bedi.
  • a zenbaki arrunt bakoitza, beste a+1 zenbaki arruntak jarraituko du.
  • Ez dago zenbaki arruntik, zeinen ondorengo zenbakia zeroa den.
  • Bi zenbaki arrunt desberdinak badira (), ondoren datozenak ere desberdinak dira ().
  • Zerorentzat eta edozein zenbaki arrunt harturik honen ondorengoarentzat betetzen den propiatatea, zenbaki arrunt guztientzat beteko da.

Azken postulatuak indukzio matematikoaren baliotasuna bermatzen du.

Zenbaki natural baten berdinak edo txikiagoak diren zenbaki natural guztien multzoa , hau da, segida natural baten segmentua deitzen da eta edo [1] moduan idatzi ohi da.

  1. Tsipkin, A. G. Manual de Matemáticas, Edirorial Mir, Moscú (1985), traducción de T. I. Shopovalova

Developed by StudentB