Kultainen leikkaus

Kultaisen leikkauksen mukaisesti jaettu jana. Janan koko pituuden a + b suhde suurempaan osaan a on sama kuin tämän osan suhde pienempään osaan b.

Kultainen leikkaus eli kultainen suhde saadaan, kun jana jaetaan kahteen osaan niin, että lyhyemmän osan suhde pidempään osaan on sama kuin pidemmän osan suhde koko janaan. Kultainen suhde on tällöin pidemmän ja lyhyemmän jako-osan pituuksien suhde,[1] noin 1 : 0,618 tai 1,618 : 1. Janan jakamista tällä tavoin sanotaan myös sen jakamiseksi jatkuvassa suhteessa.[2]

Kultaista leikkausta tutkivat ensimmäisenä antiikin Kreikan matemaatikot huomattuaan, että suhde esiintyy useissa geometrisissa kuvioissa. Sillä on tärkeä rooli paitsi matematiikassa myös estetiikassa, arkkitehtuurissa, taiteessa, luonnossa ja musiikissa.[3]

  1. Ching 1979, s. 300
  2. Otavan iso Fokus, 4. osa (Kp–Mn), s. 2045, art. Kultainen jako. Otava, 1973. ISBN 951-1-00388-7
  3. Moscowich, Ivan: Älyjätti – aivovoimistelua, s. 40. Suomentanut Petri Sipilä ja Juhani Sipilä. h.f.ullman, 2009. ISBN 978-3-8331-5365-5

Developed by StudentB