Logaritmi

Logaritmi, eli logaritmifunktio on eksponenttifunktion () käänteisfunktio:

Jossa on kantaluku, on numerus ja on logaritmi. [1] Kantalukua pidetään kiinteänä parametrina. Logaritmifunktio vastaa kysymykseen 'mihin potenssiin olisi korotettava, jotta vastaus olisi ?'. Esimerkiksi , sillä .[2]

Joidenkin logaritmifunktioiden kuvaajat

Eräille logaritmeille on omat nimensä ja merkintänsä. Kymmenkantaisen logaritmifunktion eli Briggsin logaritmin tunnus on lg:

.

Luonnollisen logaritmi­funktion, jonka kantalukuna on Neperin luku e, tunnus on ln:

.

Luonnollinen logaritmi on tärkeä funktio varsinkin differentiaali- ja integraalilaskennassa. Sen merkitys perustuu etenkin siihen, että sen derivaatta on varsin yksinkertainen funktio, 1/x. Luonnollinen logaritmi on e-kantaisen eksponenttifunktion käänteisfunktio.

Useissa sovelluksissa esiintyvän 2-kantaisen eli binäärisen logaritmifunktion tunnus on lb (= binäärinen logaritmi):

.

Pelkästään merkinnän log, jossa kantalukua ei siis ole merkitty näkyviin, merkitys ei ole täysin vakiintunut. Hyvin usein se tarkoittaa 10-kantaista logaritmia ja tämä on yleistä erityisesti laskimissa, mutta merkintä on myös usein kontekstiin sidottu ja voi tarkoittaa mielivaltaista logaritmia.

Logaritmit kehittivät 1600-luvulla toisistaan riippumatta skotlantilainen John Napier ja sveitsiläinen Jobst Bürgi. Napier julkaisi omat, luonnollista logaritmia koskevat tuloksensa vuonna 1614.[3]

  1. Juuri- ja logaritmifunktiot Opetushallinto. Arkistoitu 10.10.2019. Viitattu 12.7.2012.
  2. Viittausvirhe: Virheellinen <ref>-elementti; viitettä wolfram ei löytynyt
  3. Mirifici Logarithmorum Canonis descriptio, Ejusque usus, in utraque Trigonometria. Hart. Teoksen verkkoversio (viitattu 21.12.2020).

Developed by StudentB