Partie de | |
---|---|
Pratiqué par | |
Champs | |
Objet |
Modèle d'apprentissage automatique (d) |
L'apprentissage automatique[1],[2] (en anglais : machine learning, litt. « apprentissage machine[1],[2] »), apprentissage artificiel[1] ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes. On parle d'apprentissage statistique car l'apprentissage consiste à créer un modèle dont l'erreur statistique moyenne est la plus faible possible.
L'apprentissage automatique comporte généralement deux phases. La première consiste à estimer un modèle à partir de données, appelées observations, qui sont disponibles et en nombre fini, lors de la phase de conception du système. L'estimation du modèle consiste à résoudre une tâche pratique, telle que traduire un discours, estimer une densité de probabilité, reconnaître la présence d'un chat dans une photographie ou participer à la conduite d'un véhicule autonome. Cette phase dite « d'apprentissage » ou « d'entraînement » est généralement préalable à l'utilisation pratique du modèle. La seconde phase est la mise en production : le modèle étant déterminé, de nouvelles données peuvent alors être soumises afin d'obtenir le résultat correspondant à la tâche souhaitée.
Certains systèmes peuvent continuer à apprendre une fois en production, s'ils disposent d'un retour sur la qualité des résultats produits. C'est l'apprentissage en ligne, ou l'apprentissage continu.
Selon le type de données utilisées pour l'apprentissage, on distingue :
L'apprentissage automatique peut être appliqué à divers types de données, tels des graphes, des arbres, des courbes, ou plus simplement des vecteurs de caractéristiques, qui peuvent être des variables qualitatives ou quantitatives continues ou discrètes.
Si le modèle apprend de manière incrémentale, en fonction d'une récompense reçue par le programme pour chacune des actions entreprises, on parle d'apprentissage par renforcement.