Endomorphisme

Projection orthogonale sur une droite. Ceci est un exemple d'endomorphisme qui n'est pas un automorphisme.

En mathématiques, un endomorphisme est un morphisme (ou homomorphisme) d'un objet mathématique dans lui-même. Ainsi, un endomorphisme d'espace vectoriel E est une application linéaire f : EE, et un endomorphisme de groupe G est un morphisme de groupes f : GG, etc. En général, nous pouvons parler d'endomorphisme de n'importe quelle catégorie.

Étant donné un objet X d'une catégorie C et deux endomorphismes f et g de X (donc de type XX), la composée de g par f, notée f ∘ g (prononcer f rond g), est aussi un endomorphisme de X (elle a aussi le type XX). Comme l'application identité de X est aussi un endomorphisme de X, nous voyons que l'ensemble de tous les endomorphismes de X forme un monoïde, noté EndC(X) ou simplement End(X), si la catégorie est connue.


Developed by StudentB