En mathématiques, un espace euclidien est un objet algébrique permettant de généraliser de façon naturelle la géométrie traditionnelle développée par Euclide, dans ses Éléments. Une géométrie de cette nature modélise, en physique classique, le plan ainsi que l'espace qui nous entoure. Un espace euclidien permet également de traiter les dimensions supérieures ; il est défini par la donnée d'un espace vectoriel sur le corps des réels, de dimension finie, muni d'un produit scalaire, qui permet de « mesurer » distances et angles.
La donnée d'un produit scalaire permet par exemple de définir la notion de bases particulières dites orthonormales, d'établir une relation canonique entre l'espace et son dual, ou de préciser des familles d'endomorphismes faciles à réduire. Il permet aussi de définir une norme et par conséquent une distance donc une topologie, ce qui met à disposition les méthodes d'analyse.
Les espaces euclidiens possèdent une longue histoire ainsi que de nombreuses applications. Les relations entre cet outil et le reste des mathématiques sont multiples et variées, depuis la logique et l'algèbre jusqu'aux géométries non euclidiennes. Cet aspect est traité dans l'article « Géométrie euclidienne ».