Dans l'analyse d'un système dynamique, l'exposant de Liapounov permet de quantifier la stabilité ou l'instabilité de ses mouvements[1]. Un exposant de Liapounov peut être soit un nombre réel fini, soit +∞ ou –∞. Un mouvement instable a un exposant de Liapounov positif, un mouvement stable correspond à un exposant de Liapounov négatif. Les mouvements bornés d'un système linéaire ont un exposant de Liapounov négatif ou nul. L'exposant de Liapounov peut servir à étudier la stabilité (ou l'instabilité) des points d'équilibre des systèmes non linéaires.
Lorsqu'on linéarise un tel système au voisinage d'un point d'équilibre[2], si le système non linéaire est non autonome, le système linéaire obtenu est à coefficients variables ; chacun de ses mouvements a son propre exposant de Liapounov.
L'inverse du plus grand exposant de Liapounov est un temps caractéristique du système, appelé parfois horizon de Liapounov. Le caractère prédictible de l'évolution du système ne subsiste que pour les durées très inférieures à cet horizon, pendant lesquelles l'erreur sur le point courant de la trajectoire garde une taille comparable à l'erreur sur les conditions initiales. En revanche, pour les temps supérieurs, toute prédiction devient pratiquement impossible, même si le théorème de Cauchy-Lipschitz, qui suppose la connaissance parfaite des conditions initiales, reste valide.