En mathématiques, un logarithme est la fonction réciproque d'une exponentiation, c'est-à-dire que le logarithme de base b d'un nombre réel strictement positif est la puissance à laquelle il faut élever la base b pour obtenir ce nombre.
Le logarithme en base dix de 1000 est 3 car 103 = 10×10×10 = 1000.
Dans ce cas, le plus simple, le logarithme est le nombre entier qui compte les répétitions de la base multipliée par elle-même. Dans cette opération, multiplier un nombre par la base équivaut à ajouter 1 à son logarithme. L'exponentiation généralise cette opération de multiplication par soi-même à des puissances intermédiaires entre les entiers, qu'on exprime en nombres réels.
Le logarithme en base dix de la racine de 10, notée , est 0,5 car
, donc
Le logarithme de base b du nombre x se note logb x. Si la base est évidente d'après le contexte, ou si elle n'a pas d'importance, on peut écrire simplement log x. Par définition, .
John Napier a développé les logarithmes au début du XVIIe siècle. L'utilité du logarithme pour le calcul vient du fait que la fonction logarithme transforme un produit en somme : . Pendant trois siècles, la table de logarithmes et la règle à calcul, fondée sur une échelle logarithmique, ont servi pour le calcul, jusqu'à leur remplacement, dans le dernier quart du XXe siècle, par des calculatrices électroniques.
Le logarithme permet en outre de présenter sous une forme concise des relations entre nombres d'ordre de grandeur très différents.
Trois fonctions logarithmes sont d'usage courant :
Le logarithme complexe généralise la notion de logarithme aux nombres complexes.