Roentgenium

Roentgenium
DarmstadtiumRoentgeniumCopernicium
Au
  Structure cristalline cubique centrée
 
111
Rg
 
               
               
                                   
                                   
                                                               
                                                               
   
                                           
Rg
Tableau completTableau étendu
Position dans le tableau périodique
Symbole Rg
Nom Roentgenium
Numéro atomique 111
Groupe 11
Période 7e période
Bloc Bloc d
Famille d'éléments Métal de transition ?
Configuration électronique [Rn] 5f14 6d10 7s1
Électrons par niveau d’énergie 2, 8, 18, 32, 32, 18, 1
Propriétés atomiques de l'élément
Masse atomique [282]
Isotopes les plus stables
Iso AN Période MD Ed PD
MeV
279Rg{syn.}0,17 sα10,37275Mt
280Rg{syn.}3,6 sα9,75276Mt
281Rg[1]{syn.}17+6
−3
 s
90 % FS
10 % α

277Mt
282Rg[2]{syn.}2,1+1,4
−0,6
 min
α9,00278Mt
Propriétés physiques du corps simple
État ordinaire Présumé solide[3]
Masse volumique 28,7 g·cm-3 (prédiction)[4]
Système cristallin Cubique centré[3] (prédiction)
Divers
No CAS 54386-24-2[5]
Précautions
Élément radioactif
Radioélément à activité notable

Unités du SI & CNTP, sauf indication contraire.

Le roentgenium, roentgénium[6], röntgenium[7] ou rœntgénium[7], prononcé \ʁœnt.ɡɛ.njɔm\ ou \ʁœnt.ɡe.njɔm\ selon la graphie (symbole Rg) est l'élément chimique de numéro atomique 111. Il correspond à l'unununium (Uuu) de la dénomination systématique de l'IUPAC, et est encore appelé élément 111 dans la littérature. Il a été synthétisé pour la première fois en décembre 1994 par une réaction 209Bi (64Ni, n) 272Rg au Gesellschaft für Schwerionenforschung (GSI) de Darmstadt, en Allemagne, et son identification a été validée par l'IUPAC en janvier 2003[8]. Il a reçu son nom définitif en novembre 2004 en l'honneur du Wilhelm Röntgen, le découvreur des rayons X[9].

Il s'agit d'un transactinide très radioactif, dont l'isotope le plus stable, le 282Rg, a une période radioactive d'environ 2,1 min. Situé sous l'or dans le tableau périodique des éléments, il appartient au bloc d et serait un métal de transition, d'autant qu'il a été établi que le copernicium, qui lui fait suite sur la 7e période, présente clairement les propriétés d'un métal de transition.

  1. (en) Yu. Ts. Oganessian, F. Sh. Abdullin, C. Alexander, J. Binder, R. A. Boll, S. N. Dmitriev, J. Ezold, K. Felker, J. M. Gostic, R. K. Grzywacz, J. H. Hamilton, R. A. Henderson, M. G. Itkis, K. Miernik, D. Miller, K. J. Moody, A. N. Polyakov, A. V. Ramayya, J. B. Roberto, M. A. Ryabinin, K. P. Rykaczewski, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. V. Shumeiko, M. A. Stoyer, N. J. Stoyer, V. G. Subbotin, A. M. Sukhov, Yu. S. Tsyganov, V. K. Utyonkov, A. A. Voinov et G. K. Vostokin,, « Experimental studies of the 249Bk + 48Ca reaction including decay properties and excitation function for isotopes of element 117, and discovery of the new isotope 277Mt », Physical Review C, vol. 87, no 5,‎ , article no 054621 (DOI 10.1103/PhysRevC.87.054621, Bibcode 2013PhRvC..87e4621O, lire en ligne)
  2. (en) J. Khuyagbaatar, A. Yakushev, Ch. E. Düllmann, D. Ackermann, L.-L. Andersson, M. Asai, M. Block, R. A. Boll, H. Brand, D. M. Cox, M. Dasgupta, X. Derkx, A. Di Nitto, K. Eberhardt, J. Even, M. Evers, C. Fahlander, U. Forsberg, J. M. Gates, N. Gharibyan, P. Golubev, K. E. Gregorich, J. H. Hamilton, W. Hartmann, R.-D. Herzberg, F. P. Heßberger, D. J. Hinde, J. Hoffmann, R. Hollinger, A. Hübner, E. Jäger, B. Kindler, J. V. Kratz, J. Krier, N. Kurz, M. Laatiaoui, S. Lahiri, R. Lang, B. Lommel, M. Maiti, K. Miernik, S. Minami, A. Mistry, C. Mokry, H. Nitsche, J. P. Omtvedt, G. K. Pang, P. Papadakis, D. Renisch, J. Roberto, D. Rudolph, J. Runke, K. P. Rykaczewski, L. G. Sarmiento, M. Schädel, B. Schausten, A. Semchenkov, D. A. Shaughnessy, P. Steinegger, J. Steiner, E. E. Tereshatov, P. Thörle-Pospiech, K. Tinschert, T. Torres De Heidenreich, N. Trautmann, A. Türler, J. Uusitalo, D. E. Ward, M. Wegrzecki, N. Wiehl, S. M. Van Cleve et V. Yakusheva, « 48Ca+249Bk Fusion Reaction Leading to Element Z =117: Long-Lived α-Decaying 270Db and Discovery of 266Lr », Physical Review Letters, vol. 112, no 17,‎ , article no 172501 (PMID 24836239, DOI 10.1103/PhysRevLett.112.172501, Bibcode 2014PhRvL.112q2501K, lire en ligne)
  3. a et b (en) Andreas Östlin et Levente Vitos, « First-principles calculation of the structural stability of 6d transition metals », Physical Review B, vol. 84, no 11,‎ , article no 113104 (DOI 10.1103/PhysRevB.84.113104, Bibcode 2011PhRvB..84k3104O, lire en ligne)
  4. (en) Darleane C. Hoffman, Diana M. Lee et Valeria Pershina, « Transactinide Elements and Future Elements », The Chemistry of the Actinide and Transactinide Elements,‎ , p. 1652-1752 (ISBN 978-94-007-0210-3, DOI 10.1007/978-94-007-0211-0_14, Bibcode 2011tcot.book.1652H, lire en ligne).
  5. Base de données Chemical Abstracts interrogée via SciFinder Web le 15 décembre 2009 (résultats de la recherche)
  6. http://fr.calameo.com/books/000015856485428a9c563 et page concernée
  7. a et b Dictionnaire de l'Académie française ; la forme rœntgénium est une erreur par hypercorrection, puisque le patronyme allemand Roentgen ne prend pas la ligature en français
  8. (en) P. J. Karol, H. Nakahara, B. W. Petley et E. Vogt, « On the Claims for Discovery of Elements 110, 111, 112, 114, 116, and 118 (IUPAC Technical Report) », Pure and Applied Chemistry, vol. 75, no 10,‎ , p. 1601-1611 (DOI 10.1351/pac200375101601, lire en ligne)
  9. IUPAC : Proposition du nom roentgenium pour l’élément 111 puis IUPAC : L’élément 111 est appelé roentgenium

Developed by StudentB