En géométrie différentielle et géométrie analytique complexe, une surface de Riemann est une variété complexe de dimension 1. Cette notion a été introduite par Bernhard Riemann pour prendre en compte les singularités et les complications topologiques qui accompagnent certains prolongements analytiques de fonctions holomorphes. Par oubli de structure, une surface de Riemann se présente comme une variété différentielle réelle de dimension 2, d'où le nom surface. Elles ont été nommées en hommage au mathématicien allemand Bernhard Riemann. Toute surface réelle orientable peut être munie d'une structure complexe, autrement dit être regardée comme une surface de Riemann. Cela est précisé par le théorème d'uniformisation.
L'étude des surfaces de Riemann est à la croisée de nombreux domaines mathématiques dont, outre la géométrie différentielle, la théorie des nombres, la topologie algébrique, la géométrie algébrique, les équations aux dérivées partielles…