Archaeplastida

Archaeplastida
Evolúciós időszak: kalimmiumjelenkor
Fák, füvek és algák a Sprague-folyó közelében
Fák, füvek és algák a Sprague-folyó közelében
Rendszertani besorolás
Domén: Eukarióták (Eukaryota)
Csoport: Diaphoretickes
Csoport: Archaeplastida
Szinonimák
  • Plantae Cavalier-Smith, 1981[1]
  • Primoplantae Palmer et al. 2004[2]
Alcsoportok
Hivatkozások
Wikifajok
Wikifajok

A Wikifajok tartalmaz Archaeplastida témájú rendszertani információt.

Commons
Commons

A Wikimédia Commons tartalmaz Archaeplastida témájú kategóriát.

Az Archaeplastida (vagy Plantae sensu lato) fő eukarióta csoport, benne a fotoautotróf vörösmoszatokkal (Rhodophyta), a zöldmoszatokkal, a szárazföldi növényekkel és a Glaucophyta csoporttal.[5] Tagja még a Rhodophyta ostoros eukariotróf rokona, a nem fotoszintetikus Rhodelphidia és feltehetően a Picozoa is.[6] Két membránnal körülvett kloroplasztiszokkal rendelkeznek, melyek feltehetően endoszimbiózissal alakultak ki cianobaktérium bekebelezésével.[7] A kloroplasztiszt tartalmazó többi csoport az amőboid Paulinella kivételével 3 vagy 4 membránnal körülvett kloroplasztiszokat tartalmaznak, ezeket másodlagosan vehették fel zöld- vagy vörösmoszatoktól.[* 1] A vörös- és zöldmoszatokkal szemben a Glaucophyta esetén nincs másodlagos endoszimbiózis.[9]

Az Archaeplastida sejtjeiben jellemzően nincs centriólum, a mitokondriumok cristái laposak. Általában cellulóztartalmú sejtfaluk van, az energiát keményítőben tárolják. Ezek más eukariótákkal közös jellemzők. Genetikai tanulmányok a fő bizonyítékok arra, hogy az Archaeplastida monofiletikus, ezek alapján a plasztiszok eredete feltehetően közös. Ez azonban vitatott.[10][11] A bizonyítékok alapján az egyetlen elsődleges endoszimbiózissal szemben nem ismert alternatív történet.[12] Az eltérő eredetű plasztiszokkal rendelkező fotoszintetikus élőlények, például a barnamoszatok nem a csoport tagjai.

Az Archaeplastidában két fő evolúciós ág van. A vörösmoszatok klorofill a-t és fikobiliproteineket tartalmaznak a legtöbb cianobaktériumhoz hasonlóan, és a kloroplasztiszokon kívül van keményítőjük. A zöld növények klorofill a-t és b-t tartalmaznak, fikobiliproteineket nem, és a kloroplasztiszon belül van keményítőjük.[13] A Glaucophyta cianobaktériumokra jellemző színanyagot (cianellum) használnak, külső rétegük peptidoglikán.[14]

Az Archaeplastida nem tévesztendő össze a régebbi, elavult Archiplastideae névvel, mely cianobaktériumokat és más baktériumcsoportokat jelent.[15][16]

  1. Forráshivatkozás-hiba: Érvénytelen <ref> címke; nincs megadva szöveg a(z) 7-or-9 nevű lábjegyzeteknek
  2. Forráshivatkozás-hiba: Érvénytelen <ref> címke; nincs megadva szöveg a(z) palmer nevű lábjegyzeteknek
  3. (2021. augusztus 31.) „Phylogenomics invokes the clade housing Cryptista, Archaeplastida, and Microheliella maris”. DOI:10.1101/2021.08.29.458128. (Hozzáférés: 2021. november 25.) 
  4. (2021. november 17.) „Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae”. Nature Communications 12: 6651 (1), 6651. o. DOI:10.1038/s41467-021-26918-0. ISSN 2041-1723. PMID 34789758. PMC 8599508. 
  5. Ball, S. (2011. január 1.). „The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis”. Journal of Experimental Botany 62 (6), 1775–1801. o. DOI:10.1093/jxb/erq411. PMID 21220783. 
  6. Picozoans Are Algae After All: Study. The Scientist Magazine®
  7. Tikhonenkov, Denis V. (2020). „Predatory flagellates – the new recently discovered deep branches of the eukaryotic tree and their evolutionary and ecological significance”. Protistology 14 (1), Kiadó: Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences. DOI:10.21685/1680-0826-2020-14-1-2. 
  8. Wetherbee, Richard (2018. december 9.). „The golden paradox – a new heterokont lineage with chloroplasts surrounded by two membranes”. Journal of Phycology 22 (2), 257–278. o. DOI:10.1111/jpy.12822. PMID 30536815. 
  9. Handbook of Marine Microalgae: Biotechnology Advances, 29. o. 
  10. Parfrey. L. W. (2006. december 1.). „Evaluating support for the current classification of eukaryotic diversity”. PLOS Genetics 2 (12), e220. o. DOI:10.1371/journal.pgen.0020220. PMID 17194223. PMC 1713255. 
  11. Kim, E (2008. július 1.). „EEF2 analysis challenges the monophyly of Archaeplastida and Chromalveolata”. PLOS ONE 3 (7), e2621. o. DOI:10.1371/journal.pone.0002621. PMID 18612431. PMC 2440802. 
  12. (2014) „Monophyly of Archaeplastida supergroup and relationships among its lineages in the light of phylogenetic and phylogenomic studies. Are we close to a consensus?”. Acta Societatis Botanicorum Poloniae 83 (4), 263–280. o. DOI:10.5586/asbp.2014.044. 
  13. (2001. december 1.) „The unique features of starch metabolism in red algae”. Proceedings of the Royal Society B: Biological Sciences 268 (1474), 1417–1422. o. DOI:10.1098/rspb.2001.1644. PMID 11429143. PMC 1088757. 
  14. Adl, S.M. (2005). „The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists”. Journal of Eukaryotic Microbiology 52 (5), 399–451. o. DOI:10.1111/j.1550-7408.2005.00053.x. PMID 16248873. 
  15. Copeland, H. F.. The Classification of Lower Organisms. Palo Alto: Pacific Books, 29. o. (1956) 
  16. Bessey, C. E. (1907). „A Synopsis of Plant Phyla”. Univ. Nebraska Studies 7, 275–358. o. 


Forráshivatkozás-hiba: <ref> címkék léteznek a(z) „*” csoporthoz, de nincs hozzá <references group="*"/>


Developed by StudentB