Bilangan bulat

Bilangan bulat dapat dianggap sebagai titik-titik diskret yang berjarak sama sepanjang garis bilangan. Pada gambar ini, bilangan-bilangan bulat positif ditandai dengan warna hijau dan bilangan-bilangan bulat negatif dengan warna biru.

Bilangan bulat adalah bilangan yang dapat dituliskan tanpa komponen desimal atau pecahan. Sebagai contoh, 21, 4, 0, -3, -67 dan -2048 merupakan bilangan bulat, sedangkan 9,75 , 5 12 , dan bukan.

Himpunan bilangan bulat terdiri dari angka 0, semua bilangan bulat positif (juga disebut dengan bilangan asli), dan invers aditif-nya, semua bilangan bulat negatif .[1][2] Dalam matematika, himpunan ini sering dilambangkan dengan ,[3] atau huruf tebal (). Huruf kapital Z yang digunakan berasal dari kata Zahlen, yang berarti bilangan dalam bahasa Jerman.[4][5][6][7]

Himpunan bilangan bulat merupakan subhimpunan dari himpunan bilangan rasional, sekaligus juga dari bilangan riil.

Subhimpunan yang hanya terdiri dari angka 0 dan bilangan-bilangan bulat positif disebut dengan bilangan cacah.[8] Himpunan sendiri merupakan subhimpunan dari himpunan bilangan rasional,[9] karena nilainya dapat ditulis sebagai pecahan dengan penyebut 1. Bilangan rasional selanjutnya merupakan subhimpunan dari himpunan bilangan riil.[10]

  1. ^ santoso, Kiki Wahyu (2020-07-21). "√ Pengertian Bilangan Bulat dan Contohnya [LENGKAP] ..." Saintif (dalam bahasa Inggris). Diakses tanggal 2020-08-20. 
  2. ^ Weisstein, Eric W. "Whole Number". mathworld.wolfram.com (dalam bahasa Inggris). Diakses tanggal 2021-11-12. 
  3. ^ "Set of Integers Symbol (ℤ)". wumbo.net. Diarsipkan dari versi asli tanggal 2021-11-14. Diakses tanggal 2021-11-14. 
  4. ^ "Compendium of Mathematical Symbols". Math Vault (dalam bahasa Inggris). 2020-03-01. Diakses tanggal 2020-08-19. 
  5. ^ Weisstein, Eric W. "Integer". mathworld.wolfram.com (dalam bahasa Inggris). Diakses tanggal 2020-08-11. 
  6. ^ Miller, Jeff (2010-08-29). "Earliest Uses of Symbols of Number Theory". Diarsipkan dari versi asli tanggal 2010-01-31. Diakses tanggal 2010-09-20. 
  7. ^ Peter Jephson Cameron (1998). Introduction to Algebra. Oxford University Press. hlm. 4. ISBN 978-0-19-850195-4. Diarsipkan dari versi asli tanggal 2016-12-08. Diakses tanggal 2016-02-15. 
  8. ^ Pasinggi, Yonathan Saba (2019). Kesulitan Memahami Konsep Bilangan Cacah di Sekolah Dasar (PDF). Gowa: Agma. hlm. 17. 
  9. ^ "Intermediate Algebra, Tutorial 3: Sets of Numbers". www.wtamu.edu. Diakses tanggal 2021-11-15. 
  10. ^ "CK12-Foundation". flexbooks.ck12.org. Diakses tanggal 2021-11-15. 

Developed by StudentB