Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari p-group di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan. (Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan penerjemahan artikel) |
Struktur aljabar → Teori grup Teori grup |
---|
Dalam matematika, khususnya teori grup, pada bilangan prima p, a grup-p adalah grup di mana urutan dari setiap elemen adalah daya dari p . Artinya, untuk setiap elemen g dari grup- p G , terdapat bilangan bulat nonnegatif n sehingga produk dari pn salinan g , dan tidak lebih sedikit, sama dengan elemen identitas. Urutan elemen yang berbeda mungkin kekuatan yang berbeda dari p .
Abelian p - grup juga disebut primer-p atau hanya primer.
Sebuah grup terbatas adalah grup p jika dan hanya jika urutan (jumlah elemennya) adalah pangkat dari p . Diberikan grup terbatas G , Teorema Sylow menjamin keberadaan subgrup dari G dengan urutan p n untuk setiap prime power p n yang membagi urutan '
Sisa artikel ini membahas grup p terbatas. Untuk contoh grup abelian p tak hingga, lihat Grup Prüfer, dan untuk contoh grup sederhana p tak terbatas, lihat Grup monster Tarski.