Ruang Hilbert

Keadaan pita bergetar dapat dimodelkan sebagai titik dalam ruang Hilbert. Dekomposisi dawai yang bergetar menjadi getarannya dalam nada tambahan yang berbeda diberikan oleh proyeksi titik ke sumbu koordinat di ruang.

Konsep matematika dari ruang Hilbert, dinamai David Hilbert, menggeneralisasi gagasan ruang Euklides. Maka memperluas metode aljabar vektor dan kalkulus dari dua dimensi bidang Euclidean dan ruang tiga dimensi ke ruang dengan berhingga atau tak hingga. Ruang Hilbert adalah ruang vektor yang dilengkapi dengan hasil kali dalam, sebuah operasi yang memungkinkan untuk menentukan panjang dan sudut. Lebih lanjut, ruang Hilbert adalah lengkap, yang berarti bahwa ada cukup limit di ruang untuk memungkinkan teknik kalkulus digunakan.

Ruang Hilbert muncul secara alami dan sering dalam matematika dan fisika, biasanya sebagai dimensi tak hingga ruang fungsi. Ruang Hilbert paling awal dipelajari dari sudut pandang ini pada dekade pertama abad ke-20 oleh David Hilbert, Erhard Schmidt, dan Frigyes Riesz. Mereka adalah alat yang sangat diperlukan dalam teori persamaan diferensial parsial s, mekanika kuantum, Analisis Fourier (yang mencakup aplikasi untuk pemrosesan sinyal dan perpindahan panas), dan teori ergodik (yang membentuk dasar matematika termodinamika). John von Neumann menciptakan istilah ruang Hilbert untuk konsep abstrak yang mendasari banyak aplikasi yang beragam ini. Keberhasilan metode ruang Hilbert mengantarkan era yang sangat bermanfaat bagi analisis fungsional. Terlepas dari ruang Euclidean klasik, contoh ruang Hilbert meliputi ruang fungsi terintegralkan persegi, ruang urutan, Ruang Sobolev terdiri dari fungsi umum, dan Ruang Hardy dari fungsi holomorfik.

Intuisi geometris memainkan peran penting dalam banyak aspek teori ruang Hilbert. Analog tepat dari Teorema Pythagoras dan hukum jajaran genjang berlaku di ruang Hilbert. Pada tingkat yang lebih dalam, proyeksi tegak lurus ke subruang (analog dari "menurunkan ketinggian" dari segitiga) memainkan peran penting dalam masalah pengoptimalan dan lainnya sebagai. Sebuah elemen ruang Hilbert dapat secara unik ditentukan oleh koordinatnya sehubungan dengan satu set sumbu koordinat (sebuah basis orthonormal), dalam analogi dengan koordinat Kartesius pada bidang. Ketika himpunan sumbu itu countably infinite, ruang Hilbert juga dapat dianggap berguna dalam hal ruang urutan tak hingga yang persegi summabel. Ruang terakhir sering dalam literatur yang lebih tua disebut sebagai ruang Hilbert. Operator linear pada ruang Hilbert juga merupakan objek yang cukup konkret: dalam kasus yang baik, mereka hanyalah transformasi yang meregangkan ruang oleh faktor-faktor berbeda dalam arah yang saling tegak lurus dalam arti yang dibuat tepat oleh studi spektrum.


Developed by StudentB