Turunan

Grafik fungsi (warna hitam) dan garis tangen pada fungsi (warna merah). Kemiringan dari garis tangen sama dengan turunan fungsi pada titik tersebut.

Dalam matematika, turunan atau derivatif dari sebuah fungsi adalah cara mengukur sensitivitas perubahan nilai fungsi terhadap perubahan pada nilai variabelnya. Sebagai contoh, turunan dari posisi sebuah benda bergerak terhadap waktu mengukur kecepatan benda bergerak ketika waktu berjalan. Turunan adalah alat penting dalam kalkulus.

Turunan sebuah fungsi satu variabel di suatu titik, jika itu ada, adalah kemiringan dari garis singgung dari grafik fungsi di titik tersebut. Garis singgung adalah hampiran (aproksimasi) linear terbaik dari fungsi di sekitar titik tersebut. Konsep turunan dapat diperumum untuk fungsi multivariabel. Dalam perumuman ini, turunan dianggap sebagai transformasi linear, dengan translasi yang sesuai, menghasilkan hampiran linear dari grafik fungsi multivariabel tersebut. Matriks Jacobi adalah matriks yang merepresentasikan transformasi linear terhadap suatu basis yang ditentukan. Matriks ini dapat ditentukan dengan turunan parsial dari variabel-variabel independen. Pada fungsi multivariabel bernilai real, matriks Jacobi tereduksi menjadi vektor gradien.

Proses menemukan turunan disebut diferensiasi. Kebalikan proses ini disebut dengan antiturunan. Teorema fundamental kalkulus menyatakan hubungan diferensiasi dengan integrasi. Turunan dan integral adalah dua operasi dasar dalam kalkulus satu-variabel.

Konsep turunan fungsi yang universal banyak digunakan dalam berbagai cabang matematika maupun bidang ilmu yang lain. Dalam bidang ekonomi, turunan digunakan untuk menghitung biaya marginal, total penerimaan, dan biaya produksi. Bidang biologi menggunakan turunan untuk menghitung laju pertumbuhan mikroorganisme, dalam bidang fisika untuk menghitung kepadatan kawat, dalam bidang kimia untuk menghitung laju pemisahan, dalam bidang geografi untuk menghitung laju pertumbuhan penduduk, dan masih banyak lagi.


Developed by StudentB