Calcolo di uno zero di una funzione

In matematica si presentano spesso problemi che richiedono di calcolare uno zero (o radice) di una funzione di variabile reale .

La risoluzione del problema dipende strettamente dalla forma della funzione : ad esempio, se essa è un polinomio o una funzione razionale esistono, per i gradi più bassi (cioè fino al quarto grado o solo in casi particolari di grado maggiore, si veda Teoria di Galois), formule che permettono di determinare in modo preciso tutti gli zeri, senza approssimazioni. In tutti gli altri casi, come ad esempio per una funzione esponenziale o trigonometrica (più in generale trascendente), a parte alcuni casi elementari risolvibili attraverso le definizioni, ma anche per un polinomio di grado maggiore di 4, non esistono metodi algebrici per ricavare con esattezza i valori degli zeri. Di questi casi si occupa la presente voce.

Per questo tipo di problema si preferisce parlare di algoritmi per la soluzione di equazioni, sottintendendo che questi metodi possono applicarsi sia ad equazioni lineari che ad equazioni non lineari. Taluni algoritmi per il calcolo di uno zero di una funzione reale possono essere direttamente generalizzati per risolvere equazioni non lineari.

Definendo il problema con un'equazione della forma , dove il parametro della funzione è un vettore -dimensionale (vedi funzione vettoriale), il problema si generalizza con la ricerca di un vettore -dimensionale che sia soluzione della suddetta equazione.


Developed by StudentB