In algebra lineare, il determinante di una matrice quadrata è un numero che descrive alcune proprietà algebriche e geometriche della matrice. Si tratta di un potente strumento usato in vari settori della matematica, ad esempio nello studio dei sistemi di equazioni lineari, nel calcolo infinitesimale a più dimensioni (ad esempio nello Jacobiano), nel calcolo tensoriale, nella geometria differenziale, o nella teoria combinatoria.
Il significato geometrico principale del determinante si ottiene interpretando la matrice quadrata di ordine come trasformazione lineare di uno spazio vettoriale a dimensioni: con questa interpretazione, il valore assoluto di è il fattore con cui vengono modificati i volumi degli oggetti contenuti nello spazio (anche se ciò è improprio senza considerare il significato di misura). Se è diverso da zero, il segno del determinante indica inoltre se la trasformazione preserva o cambia l'orientazione dello spazio rispetto agli assi di riferimento.
Esso viene generalmente indicato con e, a volte, con . Quest'ultima notazione è più compatta, ma anche più ambigua, in quanto utilizzata talvolta per descrivere una norma della matrice.[1]