In meccanica statistica e in termodinamica, l'entropia (dal greco antico ἐν?, en, "dentro" e τροπή, tropè, "trasformazione") è una grandezza che viene interpretata come una misura del disordine presente in un sistema fisico. Viene generalmente rappresentata dalla lettera e nel Sistema Internazionale si misura in joule fratto kelvin (J/K).
La termodinamica è il primo campo in cui l'entropia fu introdotta nel XIX secolo, a partire dagli studi della relazione fra calore e lavoro di William Rankine e Rudolf Clausius.[1] L'entropia è una funzione di stato di un sistema in equilibrio termodinamico, che, quantificando l'indisponibilità di un sistema a produrre lavoro, si introduce insieme con il secondo principio della termodinamica[2]. In base a questa definizione si può sostenere, in forma non rigorosa ma esplicativa, che quando un sistema passa da uno stato di equilibrio ordinato a uno disordinato la sua entropia aumenta; questo fatto fornisce l'indicazione sulla direzione in cui evolve spontaneamente un sistema, quindi anche la freccia del tempo (come già affermato da Arthur Eddington[3]).
È tuttavia bene notare che esiste una classe di fenomeni, detti fenomeni non lineari (ad esempio i fenomeni caotici) per i quali le leggi della termodinamica (e quindi anche l'entropia) devono essere profondamente riviste e non hanno più validità generale.[senza fonte]
L'approccio molecolare della meccanica statistica generalizza l'entropia agli stati di non-equilibrio correlandola più strettamente al concetto di ordine, precisamente alle possibili diverse disposizioni dei livelli molecolari e quindi differenti probabilità degli stati in cui può trovarsi macroscopicamente un sistema[4].
Il concetto di entropia è stato esteso ad ambiti non strettamente fisici, come le scienze sociali, la teoria dei segnali, la teoria dell'informazione, acquisendo una vasta popolarità.