Equazione differenziale alle derivate parziali iperbolica

In analisi matematica, un'equazione differenziale alle derivate parziali iperbolica di ordine è un'equazione differenziale alle derivate parziali che ha un problema ai valori iniziali ben posto per le prime derivate. Più precisamente, il problema di Cauchy può essere risolto localmente per qualunque dato iniziale posto arbitrariamente lungo ogni ipersuperficie non caratteristica.

Molte equazioni della meccanica sono di tipo iperbolico, e ciò si riflette nell'interesse per lo studio di tali equazioni. Le soluzioni delle equazioni iperboliche sono "simili" alle onde, ed infatti l'equazione iperbolica di base è l'equazione delle onde, che in una dimensione è:

La proprietà di questa equazione è che, se e la sua prima derivata temporale sono dati iniziali specificati arbitrariamente lungo la linea iniziale , allora esiste una soluzione per tutto il tempo.

Se si immette una perturbazione nei dati iniziali dell'equazione differenziale iperbolica, allora non tutti i punti dello spazio risentono assieme della perturbazione. Relativamente ad una coordinata temporale, infatti, le perturbazioni hanno una velocità di propagazione finita e viaggiano lungo una delle caratteristiche dell'equazione. Ciò distingue qualitativamente le equazioni differenziali alle derivate parziali iperboliche da quelle ellittiche e paraboliche. Una perturbazione sui dati iniziali o sul contorno di un'equazione ellittica o parabolica infatti si risente immediatamente su tutti i punti del dominio.

Sebbene la definizione di iperbolicità sia fondamentalmente qualitativa, ci sono precisi criteri che dipendono dal tipo di equazione differenziale in considerazione. C'è una teoria ben sviluppata sugli operatori differenziali lineari dovuta a Lars Gårding nel contesto dell'analisi microlocale. Le equazioni differenziali non lineari sono iperboliche se le loro linearizzazioni sono iperboliche secondo Gårding.


Developed by StudentB