Le equazioni di Eulero-Lagrange (o equazioni variazionali di Eulero) sono equazioni differenziali alle derivate parziali del secondo ordine che rivestono un ruolo cardine come modello matematico in meccanica classica e in ottimizzazione. Sono state formulate storicamente per la prima volta da Eulero nell'ambito della meccanica newtoniana e studiate per primo da Joseph-Louis Lagrange nel suo trattato Mecánique Analitique.
Declinate in meccanica classica, le equazioni di Eulero possono descrivere un sistema meccanico conservativo. In questo contesto si chiamano in particolare equazioni di Lagrange e portano alle equazioni del moto. Il teorema fondamentale della meccanica lagrangiana qui assicura che le equazioni di Lagrange sono equivalenti al secondo principio della dinamica, che mette in relazione la posizione e la velocità di ogni elemento del sistema.[1]
Le equazioni di Eulero-Lagrange si possono legare direttamente a un principio di minima azione. Nell'ambito del calcolo delle variazioni la loro soluzione è un punto stazionario per un dato funzionale[2]. Il XIX problema di Hilbert riguarda la funzione di Lagrange; la sua soluzione è stata trovata nel 1957 separatamente prima da Ennio De Giorgi e pochi mesi dopo da John Nash.