La ricerca operativa (nota anche come teoria delle decisioni, scienza della gestione o, in inglese, operations research ("Operational Research" in Europa) e indicata con le sigle RO o OR) è la branca della matematica applicata in cui problemi decisionali complessi vengono analizzati e risolti mediante modelli matematici e metodi quantitativi avanzati (ottimizzazione, simulazione, ecc.) come supporto alle decisioni stesse. La ricerca operativa riveste un ruolo importante nelle attività decisionali perché permette di operare le scelte migliori per raggiungere un determinato obiettivo rispettando vincoli che sono imposti dall'esterno e non sono sotto il controllo di chi deve compiere le decisioni.
L'obiettivo è dunque quello di fornire un supporto alla presa di decisioni. Per giungere a questo scopo, la ricerca operativa fornisce strumenti matematici di supporto alle attività decisionali in cui occorre gestire e coordinare attività e risorse limitate al fine di massimizzare o minimizzare una funzione obiettivo.
La ricerca operativa si occupa dunque di formalizzare un problema in un modello matematico e calcolare una soluzione ottima, quando possibile, o approssimata (detta anche subottima) per esso. Essa costituisce un approccio scientifico alla risoluzione di problemi complessi, si può ricondurre all'ambito della matematica applicata, ma presenta forti caratteristiche interdisciplinari relative in prevalenza a matematica, informatica, economia e finanza, ingegneria ed altre. Inoltre la ricerca operativa ha molte applicazioni commerciali soprattutto negli ambiti economico, infrastrutturale, logistico, militare, della progettazione di servizi e di sistemi di trasporto e nelle tecnologie. Nel caso particolare di problemi di carattere economico, la funzione da massimizzare può coincidere con il massimo profitto ottenibile o con il minor costo da sostenere.